324 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			324 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DTRT05
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DTRT05( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X,
 | |
| *                          LDX, XACT, LDXACT, FERR, BERR, RESLTS )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          DIAG, TRANS, UPLO
 | |
| *       INTEGER            LDA, LDB, LDX, LDXACT, N, NRHS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), BERR( * ), FERR( * ),
 | |
| *      $                   RESLTS( * ), X( LDX, * ), XACT( LDXACT, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DTRT05 tests the error bounds from iterative refinement for the
 | |
| *> computed solution to a system of equations A*X = B, where A is a
 | |
| *> triangular n by n matrix.
 | |
| *>
 | |
| *> RESLTS(1) = test of the error bound
 | |
| *>           = norm(X - XACT) / ( norm(X) * FERR )
 | |
| *>
 | |
| *> A large value is returned if this ratio is not less than one.
 | |
| *>
 | |
| *> RESLTS(2) = residual from the iterative refinement routine
 | |
| *>           = the maximum of BERR / ( (n+1)*EPS + (*) ), where
 | |
| *>             (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the matrix A is upper or lower triangular.
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          Specifies the form of the system of equations.
 | |
| *>          = 'N':  A * X = B  (No transpose)
 | |
| *>          = 'T':  A'* X = B  (Transpose)
 | |
| *>          = 'C':  A'* X = B  (Conjugate transpose = Transpose)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIAG
 | |
| *> \verbatim
 | |
| *>          DIAG is CHARACTER*1
 | |
| *>          Specifies whether or not the matrix A is unit triangular.
 | |
| *>          = 'N':  Non-unit triangular
 | |
| *>          = 'U':  Unit triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of rows of the matrices X, B, and XACT, and the
 | |
| *>          order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of columns of the matrices X, B, and XACT.
 | |
| *>          NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          The triangular matrix A.  If UPLO = 'U', the leading n by n
 | |
| *>          upper triangular part of the array A contains the upper
 | |
| *>          triangular matrix, and the strictly lower triangular part of
 | |
| *>          A is not referenced.  If UPLO = 'L', the leading n by n lower
 | |
| *>          triangular part of the array A contains the lower triangular
 | |
| *>          matrix, and the strictly upper triangular part of A is not
 | |
| *>          referenced.  If DIAG = 'U', the diagonal elements of A are
 | |
| *>          also not referenced and are assumed to be 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | |
| *>          The right hand side vectors for the system of linear
 | |
| *>          equations.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
 | |
| *>          The computed solution vectors.  Each vector is stored as a
 | |
| *>          column of the matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX
 | |
| *> \verbatim
 | |
| *>          LDX is INTEGER
 | |
| *>          The leading dimension of the array X.  LDX >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] XACT
 | |
| *> \verbatim
 | |
| *>          XACT is DOUBLE PRECISION array, dimension (LDX,NRHS)
 | |
| *>          The exact solution vectors.  Each vector is stored as a
 | |
| *>          column of the matrix XACT.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDXACT
 | |
| *> \verbatim
 | |
| *>          LDXACT is INTEGER
 | |
| *>          The leading dimension of the array XACT.  LDXACT >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] FERR
 | |
| *> \verbatim
 | |
| *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
 | |
| *>          The estimated forward error bounds for each solution vector
 | |
| *>          X.  If XTRUE is the true solution, FERR bounds the magnitude
 | |
| *>          of the largest entry in (X - XTRUE) divided by the magnitude
 | |
| *>          of the largest entry in X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BERR
 | |
| *> \verbatim
 | |
| *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
 | |
| *>          The componentwise relative backward error of each solution
 | |
| *>          vector (i.e., the smallest relative change in any entry of A
 | |
| *>          or B that makes X an exact solution).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESLTS
 | |
| *> \verbatim
 | |
| *>          RESLTS is DOUBLE PRECISION array, dimension (2)
 | |
| *>          The maximum over the NRHS solution vectors of the ratios:
 | |
| *>          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
 | |
| *>          RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup double_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DTRT05( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X,
 | |
|      $                   LDX, XACT, LDXACT, FERR, BERR, RESLTS )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          DIAG, TRANS, UPLO
 | |
|       INTEGER            LDA, LDB, LDX, LDXACT, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), BERR( * ), FERR( * ),
 | |
|      $                   RESLTS( * ), X( LDX, * ), XACT( LDXACT, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            NOTRAN, UNIT, UPPER
 | |
|       INTEGER            I, IFU, IMAX, J, K
 | |
|       DOUBLE PRECISION   AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            IDAMAX
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           LSAME, IDAMAX, DLAMCH
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if N = 0 or NRHS = 0.
 | |
| *
 | |
|       IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
 | |
|          RESLTS( 1 ) = ZERO
 | |
|          RESLTS( 2 ) = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       UNFL = DLAMCH( 'Safe minimum' )
 | |
|       OVFL = ONE / UNFL
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       NOTRAN = LSAME( TRANS, 'N' )
 | |
|       UNIT = LSAME( DIAG, 'U' )
 | |
| *
 | |
| *     Test 1:  Compute the maximum of
 | |
| *        norm(X - XACT) / ( norm(X) * FERR )
 | |
| *     over all the vectors X and XACT using the infinity-norm.
 | |
| *
 | |
|       ERRBND = ZERO
 | |
|       DO 30 J = 1, NRHS
 | |
|          IMAX = IDAMAX( N, X( 1, J ), 1 )
 | |
|          XNORM = MAX( ABS( X( IMAX, J ) ), UNFL )
 | |
|          DIFF = ZERO
 | |
|          DO 10 I = 1, N
 | |
|             DIFF = MAX( DIFF, ABS( X( I, J )-XACT( I, J ) ) )
 | |
|    10    CONTINUE
 | |
| *
 | |
|          IF( XNORM.GT.ONE ) THEN
 | |
|             GO TO 20
 | |
|          ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
 | |
|             GO TO 20
 | |
|          ELSE
 | |
|             ERRBND = ONE / EPS
 | |
|             GO TO 30
 | |
|          END IF
 | |
| *
 | |
|    20    CONTINUE
 | |
|          IF( DIFF / XNORM.LE.FERR( J ) ) THEN
 | |
|             ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
 | |
|          ELSE
 | |
|             ERRBND = ONE / EPS
 | |
|          END IF
 | |
|    30 CONTINUE
 | |
|       RESLTS( 1 ) = ERRBND
 | |
| *
 | |
| *     Test 2:  Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where
 | |
| *     (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
 | |
| *
 | |
|       IFU = 0
 | |
|       IF( UNIT )
 | |
|      $   IFU = 1
 | |
|       DO 90 K = 1, NRHS
 | |
|          DO 80 I = 1, N
 | |
|             TMP = ABS( B( I, K ) )
 | |
|             IF( UPPER ) THEN
 | |
|                IF( .NOT.NOTRAN ) THEN
 | |
|                   DO 40 J = 1, I - IFU
 | |
|                      TMP = TMP + ABS( A( J, I ) )*ABS( X( J, K ) )
 | |
|    40             CONTINUE
 | |
|                   IF( UNIT )
 | |
|      $               TMP = TMP + ABS( X( I, K ) )
 | |
|                ELSE
 | |
|                   IF( UNIT )
 | |
|      $               TMP = TMP + ABS( X( I, K ) )
 | |
|                   DO 50 J = I + IFU, N
 | |
|                      TMP = TMP + ABS( A( I, J ) )*ABS( X( J, K ) )
 | |
|    50             CONTINUE
 | |
|                END IF
 | |
|             ELSE
 | |
|                IF( NOTRAN ) THEN
 | |
|                   DO 60 J = 1, I - IFU
 | |
|                      TMP = TMP + ABS( A( I, J ) )*ABS( X( J, K ) )
 | |
|    60             CONTINUE
 | |
|                   IF( UNIT )
 | |
|      $               TMP = TMP + ABS( X( I, K ) )
 | |
|                ELSE
 | |
|                   IF( UNIT )
 | |
|      $               TMP = TMP + ABS( X( I, K ) )
 | |
|                   DO 70 J = I + IFU, N
 | |
|                      TMP = TMP + ABS( A( J, I ) )*ABS( X( J, K ) )
 | |
|    70             CONTINUE
 | |
|                END IF
 | |
|             END IF
 | |
|             IF( I.EQ.1 ) THEN
 | |
|                AXBI = TMP
 | |
|             ELSE
 | |
|                AXBI = MIN( AXBI, TMP )
 | |
|             END IF
 | |
|    80    CONTINUE
 | |
|          TMP = BERR( K ) / ( ( N+1 )*EPS+( N+1 )*UNFL /
 | |
|      $         MAX( AXBI, ( N+1 )*UNFL ) )
 | |
|          IF( K.EQ.1 ) THEN
 | |
|             RESLTS( 2 ) = TMP
 | |
|          ELSE
 | |
|             RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
 | |
|          END IF
 | |
|    90 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DTRT05
 | |
| *
 | |
|       END
 |