274 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			274 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DTRT03
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DTRT03( UPLO, TRANS, DIAG, N, NRHS, A, LDA, SCALE,
 | |
| *                          CNORM, TSCAL, X, LDX, B, LDB, WORK, RESID )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          DIAG, TRANS, UPLO
 | |
| *       INTEGER            LDA, LDB, LDX, N, NRHS
 | |
| *       DOUBLE PRECISION   RESID, SCALE, TSCAL
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), CNORM( * ),
 | |
| *      $                   WORK( * ), X( LDX, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DTRT03 computes the residual for the solution to a scaled triangular
 | |
| *> system of equations A*x = s*b  or  A'*x = s*b.
 | |
| *> Here A is a triangular matrix, A' is the transpose of A, s is a
 | |
| *> scalar, and x and b are N by NRHS matrices.  The test ratio is the
 | |
| *> maximum over the number of right hand sides of
 | |
| *>    norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
 | |
| *> where op(A) denotes A or A' and EPS is the machine epsilon.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the matrix A is upper or lower triangular.
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          Specifies the operation applied to A.
 | |
| *>          = 'N':  A *x = s*b  (No transpose)
 | |
| *>          = 'T':  A'*x = s*b  (Transpose)
 | |
| *>          = 'C':  A'*x = s*b  (Conjugate transpose = Transpose)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIAG
 | |
| *> \verbatim
 | |
| *>          DIAG is CHARACTER*1
 | |
| *>          Specifies whether or not the matrix A is unit triangular.
 | |
| *>          = 'N':  Non-unit triangular
 | |
| *>          = 'U':  Unit triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrices X and B.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          The triangular matrix A.  If UPLO = 'U', the leading n by n
 | |
| *>          upper triangular part of the array A contains the upper
 | |
| *>          triangular matrix, and the strictly lower triangular part of
 | |
| *>          A is not referenced.  If UPLO = 'L', the leading n by n lower
 | |
| *>          triangular part of the array A contains the lower triangular
 | |
| *>          matrix, and the strictly upper triangular part of A is not
 | |
| *>          referenced.  If DIAG = 'U', the diagonal elements of A are
 | |
| *>          also not referenced and are assumed to be 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SCALE
 | |
| *> \verbatim
 | |
| *>          SCALE is DOUBLE PRECISION
 | |
| *>          The scaling factor s used in solving the triangular system.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] CNORM
 | |
| *> \verbatim
 | |
| *>          CNORM is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The 1-norms of the columns of A, not counting the diagonal.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TSCAL
 | |
| *> \verbatim
 | |
| *>          TSCAL is DOUBLE PRECISION
 | |
| *>          The scaling factor used in computing the 1-norms in CNORM.
 | |
| *>          CNORM actually contains the column norms of TSCAL*A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
 | |
| *>          The computed solution vectors for the system of linear
 | |
| *>          equations.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX
 | |
| *> \verbatim
 | |
| *>          LDX is INTEGER
 | |
| *>          The leading dimension of the array X.  LDX >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | |
| *>          The right hand side vectors for the system of linear
 | |
| *>          equations.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is DOUBLE PRECISION
 | |
| *>          The maximum over the number of right hand sides of
 | |
| *>          norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup double_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DTRT03( UPLO, TRANS, DIAG, N, NRHS, A, LDA, SCALE,
 | |
|      $                   CNORM, TSCAL, X, LDX, B, LDB, WORK, RESID )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          DIAG, TRANS, UPLO
 | |
|       INTEGER            LDA, LDB, LDX, N, NRHS
 | |
|       DOUBLE PRECISION   RESID, SCALE, TSCAL
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), CNORM( * ),
 | |
|      $                   WORK( * ), X( LDX, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            IX, J
 | |
|       DOUBLE PRECISION   BIGNUM, EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            IDAMAX
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           LSAME, IDAMAX, DLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DAXPY, DCOPY, DLABAD, DSCAL, DTRMV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if N = 0
 | |
| *
 | |
|       IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       SMLNUM = DLAMCH( 'Safe minimum' )
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL DLABAD( SMLNUM, BIGNUM )
 | |
| *
 | |
| *     Compute the norm of the triangular matrix A using the column
 | |
| *     norms already computed by DLATRS.
 | |
| *
 | |
|       TNORM = ZERO
 | |
|       IF( LSAME( DIAG, 'N' ) ) THEN
 | |
|          DO 10 J = 1, N
 | |
|             TNORM = MAX( TNORM, TSCAL*ABS( A( J, J ) )+CNORM( J ) )
 | |
|    10    CONTINUE
 | |
|       ELSE
 | |
|          DO 20 J = 1, N
 | |
|             TNORM = MAX( TNORM, TSCAL+CNORM( J ) )
 | |
|    20    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Compute the maximum over the number of right hand sides of
 | |
| *        norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
 | |
| *
 | |
|       RESID = ZERO
 | |
|       DO 30 J = 1, NRHS
 | |
|          CALL DCOPY( N, X( 1, J ), 1, WORK, 1 )
 | |
|          IX = IDAMAX( N, WORK, 1 )
 | |
|          XNORM = MAX( ONE, ABS( X( IX, J ) ) )
 | |
|          XSCAL = ( ONE / XNORM ) / DBLE( N )
 | |
|          CALL DSCAL( N, XSCAL, WORK, 1 )
 | |
|          CALL DTRMV( UPLO, TRANS, DIAG, N, A, LDA, WORK, 1 )
 | |
|          CALL DAXPY( N, -SCALE*XSCAL, B( 1, J ), 1, WORK, 1 )
 | |
|          IX = IDAMAX( N, WORK, 1 )
 | |
|          ERR = TSCAL*ABS( WORK( IX ) )
 | |
|          IX = IDAMAX( N, X( 1, J ), 1 )
 | |
|          XNORM = ABS( X( IX, J ) )
 | |
|          IF( ERR*SMLNUM.LE.XNORM ) THEN
 | |
|             IF( XNORM.GT.ZERO )
 | |
|      $         ERR = ERR / XNORM
 | |
|          ELSE
 | |
|             IF( ERR.GT.ZERO )
 | |
|      $         ERR = ONE / EPS
 | |
|          END IF
 | |
|          IF( ERR*SMLNUM.LE.TNORM ) THEN
 | |
|             IF( TNORM.GT.ZERO )
 | |
|      $         ERR = ERR / TNORM
 | |
|          ELSE
 | |
|             IF( ERR.GT.ZERO )
 | |
|      $         ERR = ONE / EPS
 | |
|          END IF
 | |
|          RESID = MAX( RESID, ERR )
 | |
|    30 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DTRT03
 | |
| *
 | |
|       END
 |