242 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			242 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DPPT03
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
 | |
| *                          RESID )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            LDWORK, N
 | |
| *       DOUBLE PRECISION   RCOND, RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( * ), AINV( * ), RWORK( * ),
 | |
| *      $                   WORK( LDWORK, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DPPT03 computes the residual for a symmetric packed matrix times its
 | |
| *> inverse:
 | |
| *>    norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
 | |
| *> where EPS is the machine epsilon.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          symmetric matrix A is stored:
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of rows and columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (N*(N+1)/2)
 | |
| *>          The original symmetric matrix A, stored as a packed
 | |
| *>          triangular matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AINV
 | |
| *> \verbatim
 | |
| *>          AINV is DOUBLE PRECISION array, dimension (N*(N+1)/2)
 | |
| *>          The (symmetric) inverse of the matrix A, stored as a packed
 | |
| *>          triangular matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (LDWORK,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDWORK
 | |
| *> \verbatim
 | |
| *>          LDWORK is INTEGER
 | |
| *>          The leading dimension of the array WORK.  LDWORK >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is DOUBLE PRECISION
 | |
| *>          The reciprocal of the condition number of A, computed as
 | |
| *>          ( 1/norm(A) ) / norm(AINV).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is DOUBLE PRECISION
 | |
| *>          norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup double_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
 | |
|      $                   RESID )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            LDWORK, N
 | |
|       DOUBLE PRECISION   RCOND, RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( * ), AINV( * ), RWORK( * ),
 | |
|      $                   WORK( LDWORK, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J, JJ
 | |
|       DOUBLE PRECISION   AINVNM, ANORM, EPS
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION   DLAMCH, DLANGE, DLANSP
 | |
|       EXTERNAL           LSAME, DLAMCH, DLANGE, DLANSP
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DCOPY, DSPMV
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if N = 0.
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          RCOND = ONE
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       ANORM = DLANSP( '1', UPLO, N, A, RWORK )
 | |
|       AINVNM = DLANSP( '1', UPLO, N, AINV, RWORK )
 | |
|       IF( ANORM.LE.ZERO .OR. AINVNM.EQ.ZERO ) THEN
 | |
|          RCOND = ZERO
 | |
|          RESID = ONE / EPS
 | |
|          RETURN
 | |
|       END IF
 | |
|       RCOND = ( ONE / ANORM ) / AINVNM
 | |
| *
 | |
| *     UPLO = 'U':
 | |
| *     Copy the leading N-1 x N-1 submatrix of AINV to WORK(1:N,2:N) and
 | |
| *     expand it to a full matrix, then multiply by A one column at a
 | |
| *     time, moving the result one column to the left.
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
| *
 | |
| *        Copy AINV
 | |
| *
 | |
|          JJ = 1
 | |
|          DO 10 J = 1, N - 1
 | |
|             CALL DCOPY( J, AINV( JJ ), 1, WORK( 1, J+1 ), 1 )
 | |
|             CALL DCOPY( J-1, AINV( JJ ), 1, WORK( J, 2 ), LDWORK )
 | |
|             JJ = JJ + J
 | |
|    10    CONTINUE
 | |
|          JJ = ( ( N-1 )*N ) / 2 + 1
 | |
|          CALL DCOPY( N-1, AINV( JJ ), 1, WORK( N, 2 ), LDWORK )
 | |
| *
 | |
| *        Multiply by A
 | |
| *
 | |
|          DO 20 J = 1, N - 1
 | |
|             CALL DSPMV( 'Upper', N, -ONE, A, WORK( 1, J+1 ), 1, ZERO,
 | |
|      $                  WORK( 1, J ), 1 )
 | |
|    20    CONTINUE
 | |
|          CALL DSPMV( 'Upper', N, -ONE, A, AINV( JJ ), 1, ZERO,
 | |
|      $               WORK( 1, N ), 1 )
 | |
| *
 | |
| *     UPLO = 'L':
 | |
| *     Copy the trailing N-1 x N-1 submatrix of AINV to WORK(1:N,1:N-1)
 | |
| *     and multiply by A, moving each column to the right.
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Copy AINV
 | |
| *
 | |
|          CALL DCOPY( N-1, AINV( 2 ), 1, WORK( 1, 1 ), LDWORK )
 | |
|          JJ = N + 1
 | |
|          DO 30 J = 2, N
 | |
|             CALL DCOPY( N-J+1, AINV( JJ ), 1, WORK( J, J-1 ), 1 )
 | |
|             CALL DCOPY( N-J, AINV( JJ+1 ), 1, WORK( J, J ), LDWORK )
 | |
|             JJ = JJ + N - J + 1
 | |
|    30    CONTINUE
 | |
| *
 | |
| *        Multiply by A
 | |
| *
 | |
|          DO 40 J = N, 2, -1
 | |
|             CALL DSPMV( 'Lower', N, -ONE, A, WORK( 1, J-1 ), 1, ZERO,
 | |
|      $                  WORK( 1, J ), 1 )
 | |
|    40    CONTINUE
 | |
|          CALL DSPMV( 'Lower', N, -ONE, A, AINV( 1 ), 1, ZERO,
 | |
|      $               WORK( 1, 1 ), 1 )
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Add the identity matrix to WORK .
 | |
| *
 | |
|       DO 50 I = 1, N
 | |
|          WORK( I, I ) = WORK( I, I ) + ONE
 | |
|    50 CONTINUE
 | |
| *
 | |
| *     Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
 | |
| *
 | |
|       RESID = DLANGE( '1', N, N, WORK, LDWORK, RWORK )
 | |
| *
 | |
|       RESID = ( ( RESID*RCOND ) / EPS ) / DBLE( N )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DPPT03
 | |
| *
 | |
|       END
 |