245 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			245 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DGBT01
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
 | |
| *                          RESID )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            KL, KU, LDA, LDAFAC, M, N
 | |
| *       DOUBLE PRECISION   RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGBT01 reconstructs a band matrix  A  from its L*U factorization and
 | |
| *> computes the residual:
 | |
| *>    norm(L*U - A) / ( N * norm(A) * EPS ),
 | |
| *> where EPS is the machine epsilon.
 | |
| *>
 | |
| *> The expression L*U - A is computed one column at a time, so A and
 | |
| *> AFAC are not modified.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KL
 | |
| *> \verbatim
 | |
| *>          KL is INTEGER
 | |
| *>          The number of subdiagonals within the band of A.  KL >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KU
 | |
| *> \verbatim
 | |
| *>          KU is INTEGER
 | |
| *>          The number of superdiagonals within the band of A.  KU >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          The original matrix A in band storage, stored in rows 1 to
 | |
| *>          KL+KU+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER.
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,KL+KU+1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AFAC
 | |
| *> \verbatim
 | |
| *>          AFAC is DOUBLE PRECISION array, dimension (LDAFAC,N)
 | |
| *>          The factored form of the matrix A.  AFAC contains the banded
 | |
| *>          factors L and U from the L*U factorization, as computed by
 | |
| *>          DGBTRF.  U is stored as an upper triangular band matrix with
 | |
| *>          KL+KU superdiagonals in rows 1 to KL+KU+1, and the
 | |
| *>          multipliers used during the factorization are stored in rows
 | |
| *>          KL+KU+2 to 2*KL+KU+1.  See DGBTRF for further details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAFAC
 | |
| *> \verbatim
 | |
| *>          LDAFAC is INTEGER
 | |
| *>          The leading dimension of the array AFAC.
 | |
| *>          LDAFAC >= max(1,2*KL*KU+1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (min(M,N))
 | |
| *>          The pivot indices from DGBTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (2*KL+KU+1)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is DOUBLE PRECISION
 | |
| *>          norm(L*U - A) / ( N * norm(A) * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup double_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
 | |
|      $                   RESID )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            KL, KU, LDA, LDAFAC, M, N
 | |
|       DOUBLE PRECISION   RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, I1, I2, IL, IP, IW, J, JL, JU, JUA, KD, LENJ
 | |
|       DOUBLE PRECISION   ANORM, EPS, T
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DASUM, DLAMCH
 | |
|       EXTERNAL           DASUM, DLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DAXPY, DCOPY
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if M = 0 or N = 0.
 | |
| *
 | |
|       RESID = ZERO
 | |
|       IF( M.LE.0 .OR. N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Determine EPS and the norm of A.
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       KD = KU + 1
 | |
|       ANORM = ZERO
 | |
|       DO 10 J = 1, N
 | |
|          I1 = MAX( KD+1-J, 1 )
 | |
|          I2 = MIN( KD+M-J, KL+KD )
 | |
|          IF( I2.GE.I1 )
 | |
|      $      ANORM = MAX( ANORM, DASUM( I2-I1+1, A( I1, J ), 1 ) )
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Compute one column at a time of L*U - A.
 | |
| *
 | |
|       KD = KL + KU + 1
 | |
|       DO 40 J = 1, N
 | |
| *
 | |
| *        Copy the J-th column of U to WORK.
 | |
| *
 | |
|          JU = MIN( KL+KU, J-1 )
 | |
|          JL = MIN( KL, M-J )
 | |
|          LENJ = MIN( M, J ) - J + JU + 1
 | |
|          IF( LENJ.GT.0 ) THEN
 | |
|             CALL DCOPY( LENJ, AFAC( KD-JU, J ), 1, WORK, 1 )
 | |
|             DO 20 I = LENJ + 1, JU + JL + 1
 | |
|                WORK( I ) = ZERO
 | |
|    20       CONTINUE
 | |
| *
 | |
| *           Multiply by the unit lower triangular matrix L.  Note that L
 | |
| *           is stored as a product of transformations and permutations.
 | |
| *
 | |
|             DO 30 I = MIN( M-1, J ), J - JU, -1
 | |
|                IL = MIN( KL, M-I )
 | |
|                IF( IL.GT.0 ) THEN
 | |
|                   IW = I - J + JU + 1
 | |
|                   T = WORK( IW )
 | |
|                   CALL DAXPY( IL, T, AFAC( KD+1, I ), 1, WORK( IW+1 ),
 | |
|      $                        1 )
 | |
|                   IP = IPIV( I )
 | |
|                   IF( I.NE.IP ) THEN
 | |
|                      IP = IP - J + JU + 1
 | |
|                      WORK( IW ) = WORK( IP )
 | |
|                      WORK( IP ) = T
 | |
|                   END IF
 | |
|                END IF
 | |
|    30       CONTINUE
 | |
| *
 | |
| *           Subtract the corresponding column of A.
 | |
| *
 | |
|             JUA = MIN( JU, KU )
 | |
|             IF( JUA+JL+1.GT.0 )
 | |
|      $         CALL DAXPY( JUA+JL+1, -ONE, A( KU+1-JUA, J ), 1,
 | |
|      $                     WORK( JU+1-JUA ), 1 )
 | |
| *
 | |
| *           Compute the 1-norm of the column.
 | |
| *
 | |
|             RESID = MAX( RESID, DASUM( JU+JL+1, WORK, 1 ) )
 | |
|          END IF
 | |
|    40 CONTINUE
 | |
| *
 | |
| *     Compute norm( L*U - A ) / ( N * norm(A) * EPS )
 | |
| *
 | |
|       IF( ANORM.LE.ZERO ) THEN
 | |
|          IF( RESID.NE.ZERO )
 | |
|      $      RESID = ONE / EPS
 | |
|       ELSE
 | |
|          RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGBT01
 | |
| *
 | |
|       END
 |