344 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			344 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CTBT05
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CTBT05( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
 | |
| *                          LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          DIAG, TRANS, UPLO
 | |
| *       INTEGER            KD, LDAB, LDB, LDX, LDXACT, N, NRHS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               BERR( * ), FERR( * ), RESLTS( * )
 | |
| *       COMPLEX            AB( LDAB, * ), B( LDB, * ), X( LDX, * ),
 | |
| *      $                   XACT( LDXACT, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CTBT05 tests the error bounds from iterative refinement for the
 | |
| *> computed solution to a system of equations A*X = B, where A is a
 | |
| *> triangular band matrix.
 | |
| *>
 | |
| *> RESLTS(1) = test of the error bound
 | |
| *>           = norm(X - XACT) / ( norm(X) * FERR )
 | |
| *>
 | |
| *> A large value is returned if this ratio is not less than one.
 | |
| *>
 | |
| *> RESLTS(2) = residual from the iterative refinement routine
 | |
| *>           = the maximum of BERR / ( NZ*EPS + (*) ), where
 | |
| *>             (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
 | |
| *>             and NZ = max. number of nonzeros in any row of A, plus 1
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the matrix A is upper or lower triangular.
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          Specifies the form of the system of equations.
 | |
| *>          = 'N':  A * X = B  (No transpose)
 | |
| *>          = 'T':  A'* X = B  (Transpose)
 | |
| *>          = 'C':  A'* X = B  (Conjugate transpose = Transpose)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIAG
 | |
| *> \verbatim
 | |
| *>          DIAG is CHARACTER*1
 | |
| *>          Specifies whether or not the matrix A is unit triangular.
 | |
| *>          = 'N':  Non-unit triangular
 | |
| *>          = 'U':  Unit triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of rows of the matrices X, B, and XACT, and the
 | |
| *>          order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KD
 | |
| *> \verbatim
 | |
| *>          KD is INTEGER
 | |
| *>          The number of super-diagonals of the matrix A if UPLO = 'U',
 | |
| *>          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of columns of the matrices X, B, and XACT.
 | |
| *>          NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AB
 | |
| *> \verbatim
 | |
| *>          AB is COMPLEX array, dimension (LDAB,N)
 | |
| *>          The upper or lower triangular band matrix A, stored in the
 | |
| *>          first kd+1 rows of the array. The j-th column of A is stored
 | |
| *>          in the j-th column of the array AB as follows:
 | |
| *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 | |
| *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 | |
| *>          If DIAG = 'U', the diagonal elements of A are not referenced
 | |
| *>          and are assumed to be 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>          The leading dimension of the array AB.  LDAB >= KD+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB,NRHS)
 | |
| *>          The right hand side vectors for the system of linear
 | |
| *>          equations.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX array, dimension (LDX,NRHS)
 | |
| *>          The computed solution vectors.  Each vector is stored as a
 | |
| *>          column of the matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX
 | |
| *> \verbatim
 | |
| *>          LDX is INTEGER
 | |
| *>          The leading dimension of the array X.  LDX >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] XACT
 | |
| *> \verbatim
 | |
| *>          XACT is COMPLEX array, dimension (LDX,NRHS)
 | |
| *>          The exact solution vectors.  Each vector is stored as a
 | |
| *>          column of the matrix XACT.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDXACT
 | |
| *> \verbatim
 | |
| *>          LDXACT is INTEGER
 | |
| *>          The leading dimension of the array XACT.  LDXACT >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] FERR
 | |
| *> \verbatim
 | |
| *>          FERR is REAL array, dimension (NRHS)
 | |
| *>          The estimated forward error bounds for each solution vector
 | |
| *>          X.  If XTRUE is the true solution, FERR bounds the magnitude
 | |
| *>          of the largest entry in (X - XTRUE) divided by the magnitude
 | |
| *>          of the largest entry in X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BERR
 | |
| *> \verbatim
 | |
| *>          BERR is REAL array, dimension (NRHS)
 | |
| *>          The componentwise relative backward error of each solution
 | |
| *>          vector (i.e., the smallest relative change in any entry of A
 | |
| *>          or B that makes X an exact solution).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESLTS
 | |
| *> \verbatim
 | |
| *>          RESLTS is REAL array, dimension (2)
 | |
| *>          The maximum over the NRHS solution vectors of the ratios:
 | |
| *>          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
 | |
| *>          RESLTS(2) = BERR / ( NZ*EPS + (*) )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CTBT05( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
 | |
|      $                   LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          DIAG, TRANS, UPLO
 | |
|       INTEGER            KD, LDAB, LDB, LDX, LDXACT, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               BERR( * ), FERR( * ), RESLTS( * )
 | |
|       COMPLEX            AB( LDAB, * ), B( LDB, * ), X( LDX, * ),
 | |
|      $                   XACT( LDXACT, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            NOTRAN, UNIT, UPPER
 | |
|       INTEGER            I, IFU, IMAX, J, K, NZ
 | |
|       REAL               AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
 | |
|       COMPLEX            ZDUM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ICAMAX
 | |
|       REAL               SLAMCH
 | |
|       EXTERNAL           LSAME, ICAMAX, SLAMCH
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, AIMAG, MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       REAL               CABS1
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if N = 0 or NRHS = 0.
 | |
| *
 | |
|       IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
 | |
|          RESLTS( 1 ) = ZERO
 | |
|          RESLTS( 2 ) = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       EPS = SLAMCH( 'Epsilon' )
 | |
|       UNFL = SLAMCH( 'Safe minimum' )
 | |
|       OVFL = ONE / UNFL
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       NOTRAN = LSAME( TRANS, 'N' )
 | |
|       UNIT = LSAME( DIAG, 'U' )
 | |
|       NZ = MIN( KD, N-1 ) + 1
 | |
| *
 | |
| *     Test 1:  Compute the maximum of
 | |
| *        norm(X - XACT) / ( norm(X) * FERR )
 | |
| *     over all the vectors X and XACT using the infinity-norm.
 | |
| *
 | |
|       ERRBND = ZERO
 | |
|       DO 30 J = 1, NRHS
 | |
|          IMAX = ICAMAX( N, X( 1, J ), 1 )
 | |
|          XNORM = MAX( CABS1( X( IMAX, J ) ), UNFL )
 | |
|          DIFF = ZERO
 | |
|          DO 10 I = 1, N
 | |
|             DIFF = MAX( DIFF, CABS1( X( I, J )-XACT( I, J ) ) )
 | |
|    10    CONTINUE
 | |
| *
 | |
|          IF( XNORM.GT.ONE ) THEN
 | |
|             GO TO 20
 | |
|          ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
 | |
|             GO TO 20
 | |
|          ELSE
 | |
|             ERRBND = ONE / EPS
 | |
|             GO TO 30
 | |
|          END IF
 | |
| *
 | |
|    20    CONTINUE
 | |
|          IF( DIFF / XNORM.LE.FERR( J ) ) THEN
 | |
|             ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
 | |
|          ELSE
 | |
|             ERRBND = ONE / EPS
 | |
|          END IF
 | |
|    30 CONTINUE
 | |
|       RESLTS( 1 ) = ERRBND
 | |
| *
 | |
| *     Test 2:  Compute the maximum of BERR / ( NZ*EPS + (*) ), where
 | |
| *     (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
 | |
| *
 | |
|       IFU = 0
 | |
|       IF( UNIT )
 | |
|      $   IFU = 1
 | |
|       DO 90 K = 1, NRHS
 | |
|          DO 80 I = 1, N
 | |
|             TMP = CABS1( B( I, K ) )
 | |
|             IF( UPPER ) THEN
 | |
|                IF( .NOT.NOTRAN ) THEN
 | |
|                   DO 40 J = MAX( I-KD, 1 ), I - IFU
 | |
|                      TMP = TMP + CABS1( AB( KD+1-I+J, I ) )*
 | |
|      $                     CABS1( X( J, K ) )
 | |
|    40             CONTINUE
 | |
|                   IF( UNIT )
 | |
|      $               TMP = TMP + CABS1( X( I, K ) )
 | |
|                ELSE
 | |
|                   IF( UNIT )
 | |
|      $               TMP = TMP + CABS1( X( I, K ) )
 | |
|                   DO 50 J = I + IFU, MIN( I+KD, N )
 | |
|                      TMP = TMP + CABS1( AB( KD+1+I-J, J ) )*
 | |
|      $                     CABS1( X( J, K ) )
 | |
|    50             CONTINUE
 | |
|                END IF
 | |
|             ELSE
 | |
|                IF( NOTRAN ) THEN
 | |
|                   DO 60 J = MAX( I-KD, 1 ), I - IFU
 | |
|                      TMP = TMP + CABS1( AB( 1+I-J, J ) )*
 | |
|      $                     CABS1( X( J, K ) )
 | |
|    60             CONTINUE
 | |
|                   IF( UNIT )
 | |
|      $               TMP = TMP + CABS1( X( I, K ) )
 | |
|                ELSE
 | |
|                   IF( UNIT )
 | |
|      $               TMP = TMP + CABS1( X( I, K ) )
 | |
|                   DO 70 J = I + IFU, MIN( I+KD, N )
 | |
|                      TMP = TMP + CABS1( AB( 1+J-I, I ) )*
 | |
|      $                     CABS1( X( J, K ) )
 | |
|    70             CONTINUE
 | |
|                END IF
 | |
|             END IF
 | |
|             IF( I.EQ.1 ) THEN
 | |
|                AXBI = TMP
 | |
|             ELSE
 | |
|                AXBI = MIN( AXBI, TMP )
 | |
|             END IF
 | |
|    80    CONTINUE
 | |
|          TMP = BERR( K ) / ( NZ*EPS+NZ*UNFL / MAX( AXBI, NZ*UNFL ) )
 | |
|          IF( K.EQ.1 ) THEN
 | |
|             RESLTS( 2 ) = TMP
 | |
|          ELSE
 | |
|             RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
 | |
|          END IF
 | |
|    90 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CTBT05
 | |
| *
 | |
|       END
 |