322 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			322 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CQRT15
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CQRT15( SCALE, RKSEL, M, N, NRHS, A, LDA, B, LDB, S,
 | |
| *                          RANK, NORMA, NORMB, ISEED, WORK, LWORK )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDA, LDB, LWORK, M, N, NRHS, RANK, RKSEL, SCALE
 | |
| *       REAL               NORMA, NORMB
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            ISEED( 4 )
 | |
| *       REAL               S( * )
 | |
| *       COMPLEX            A( LDA, * ), B( LDB, * ), WORK( LWORK )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CQRT15 generates a matrix with full or deficient rank and of various
 | |
| *> norms.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] SCALE
 | |
| *> \verbatim
 | |
| *>          SCALE is INTEGER
 | |
| *>          SCALE = 1: normally scaled matrix
 | |
| *>          SCALE = 2: matrix scaled up
 | |
| *>          SCALE = 3: matrix scaled down
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RKSEL
 | |
| *> \verbatim
 | |
| *>          RKSEL is INTEGER
 | |
| *>          RKSEL = 1: full rank matrix
 | |
| *>          RKSEL = 2: rank-deficient matrix
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of columns of B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          The M-by-N matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB, NRHS)
 | |
| *>          A matrix that is in the range space of matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] S
 | |
| *> \verbatim
 | |
| *>          S is REAL array, dimension MIN(M,N)
 | |
| *>          Singular values of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RANK
 | |
| *> \verbatim
 | |
| *>          RANK is INTEGER
 | |
| *>          number of nonzero singular values of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] NORMA
 | |
| *> \verbatim
 | |
| *>          NORMA is REAL
 | |
| *>          one-norm norm of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] NORMB
 | |
| *> \verbatim
 | |
| *>          NORMB is REAL
 | |
| *>          one-norm norm of B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] ISEED
 | |
| *> \verbatim
 | |
| *>          ISEED is integer array, dimension (4)
 | |
| *>          seed for random number generator.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          length of work space required.
 | |
| *>          LWORK >= MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CQRT15( SCALE, RKSEL, M, N, NRHS, A, LDA, B, LDB, S,
 | |
|      $                   RANK, NORMA, NORMB, ISEED, WORK, LWORK )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDA, LDB, LWORK, M, N, NRHS, RANK, RKSEL, SCALE
 | |
|       REAL               NORMA, NORMB
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            ISEED( 4 )
 | |
|       REAL               S( * )
 | |
|       COMPLEX            A( LDA, * ), B( LDB, * ), WORK( LWORK )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE, TWO, SVMIN
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
 | |
|      $                   SVMIN = 0.1E+0 )
 | |
|       COMPLEX            CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
 | |
|      $                   CONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            INFO, J, MN
 | |
|       REAL               BIGNUM, EPS, SMLNUM, TEMP
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       REAL               DUMMY( 1 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               CLANGE, SASUM, SCNRM2, SLAMCH, SLARND
 | |
|       EXTERNAL           CLANGE, SASUM, SCNRM2, SLAMCH, SLARND
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGEMM, CLARF, CLARNV, CLAROR, CLASCL, CLASET,
 | |
|      $                   CSSCAL, SLABAD, SLAORD, SLASCL, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, CMPLX, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       MN = MIN( M, N )
 | |
|       IF( LWORK.LT.MAX( M+MN, MN*NRHS, 2*N+M ) ) THEN
 | |
|          CALL XERBLA( 'CQRT15', 16 )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       SMLNUM = SLAMCH( 'Safe minimum' )
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL SLABAD( SMLNUM, BIGNUM )
 | |
|       EPS = SLAMCH( 'Epsilon' )
 | |
|       SMLNUM = ( SMLNUM / EPS ) / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
| *
 | |
| *     Determine rank and (unscaled) singular values
 | |
| *
 | |
|       IF( RKSEL.EQ.1 ) THEN
 | |
|          RANK = MN
 | |
|       ELSE IF( RKSEL.EQ.2 ) THEN
 | |
|          RANK = ( 3*MN ) / 4
 | |
|          DO 10 J = RANK + 1, MN
 | |
|             S( J ) = ZERO
 | |
|    10    CONTINUE
 | |
|       ELSE
 | |
|          CALL XERBLA( 'CQRT15', 2 )
 | |
|       END IF
 | |
| *
 | |
|       IF( RANK.GT.0 ) THEN
 | |
| *
 | |
| *        Nontrivial case
 | |
| *
 | |
|          S( 1 ) = ONE
 | |
|          DO 30 J = 2, RANK
 | |
|    20       CONTINUE
 | |
|             TEMP = SLARND( 1, ISEED )
 | |
|             IF( TEMP.GT.SVMIN ) THEN
 | |
|                S( J ) = ABS( TEMP )
 | |
|             ELSE
 | |
|                GO TO 20
 | |
|             END IF
 | |
|    30    CONTINUE
 | |
|          CALL SLAORD( 'Decreasing', RANK, S, 1 )
 | |
| *
 | |
| *        Generate 'rank' columns of a random orthogonal matrix in A
 | |
| *
 | |
|          CALL CLARNV( 2, ISEED, M, WORK )
 | |
|          CALL CSSCAL( M, ONE / SCNRM2( M, WORK, 1 ), WORK, 1 )
 | |
|          CALL CLASET( 'Full', M, RANK, CZERO, CONE, A, LDA )
 | |
|          CALL CLARF( 'Left', M, RANK, WORK, 1, CMPLX( TWO ), A, LDA,
 | |
|      $               WORK( M+1 ) )
 | |
| *
 | |
| *        workspace used: m+mn
 | |
| *
 | |
| *        Generate consistent rhs in the range space of A
 | |
| *
 | |
|          CALL CLARNV( 2, ISEED, RANK*NRHS, WORK )
 | |
|          CALL CGEMM( 'No transpose', 'No transpose', M, NRHS, RANK,
 | |
|      $               CONE, A, LDA, WORK, RANK, CZERO, B, LDB )
 | |
| *
 | |
| *        work space used: <= mn *nrhs
 | |
| *
 | |
| *        generate (unscaled) matrix A
 | |
| *
 | |
|          DO 40 J = 1, RANK
 | |
|             CALL CSSCAL( M, S( J ), A( 1, J ), 1 )
 | |
|    40    CONTINUE
 | |
|          IF( RANK.LT.N )
 | |
|      $      CALL CLASET( 'Full', M, N-RANK, CZERO, CZERO,
 | |
|      $                   A( 1, RANK+1 ), LDA )
 | |
|          CALL CLAROR( 'Right', 'No initialization', M, N, A, LDA, ISEED,
 | |
|      $                WORK, INFO )
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        work space used 2*n+m
 | |
| *
 | |
| *        Generate null matrix and rhs
 | |
| *
 | |
|          DO 50 J = 1, MN
 | |
|             S( J ) = ZERO
 | |
|    50    CONTINUE
 | |
|          CALL CLASET( 'Full', M, N, CZERO, CZERO, A, LDA )
 | |
|          CALL CLASET( 'Full', M, NRHS, CZERO, CZERO, B, LDB )
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Scale the matrix
 | |
| *
 | |
|       IF( SCALE.NE.1 ) THEN
 | |
|          NORMA = CLANGE( 'Max', M, N, A, LDA, DUMMY )
 | |
|          IF( NORMA.NE.ZERO ) THEN
 | |
|             IF( SCALE.EQ.2 ) THEN
 | |
| *
 | |
| *              matrix scaled up
 | |
| *
 | |
|                CALL CLASCL( 'General', 0, 0, NORMA, BIGNUM, M, N, A,
 | |
|      $                      LDA, INFO )
 | |
|                CALL SLASCL( 'General', 0, 0, NORMA, BIGNUM, MN, 1, S,
 | |
|      $                      MN, INFO )
 | |
|                CALL CLASCL( 'General', 0, 0, NORMA, BIGNUM, M, NRHS, B,
 | |
|      $                      LDB, INFO )
 | |
|             ELSE IF( SCALE.EQ.3 ) THEN
 | |
| *
 | |
| *              matrix scaled down
 | |
| *
 | |
|                CALL CLASCL( 'General', 0, 0, NORMA, SMLNUM, M, N, A,
 | |
|      $                      LDA, INFO )
 | |
|                CALL SLASCL( 'General', 0, 0, NORMA, SMLNUM, MN, 1, S,
 | |
|      $                      MN, INFO )
 | |
|                CALL CLASCL( 'General', 0, 0, NORMA, SMLNUM, M, NRHS, B,
 | |
|      $                      LDB, INFO )
 | |
|             ELSE
 | |
|                CALL XERBLA( 'CQRT15', 1 )
 | |
|                RETURN
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       NORMA = SASUM( MN, S, 1 )
 | |
|       NORMB = CLANGE( 'One-norm', M, NRHS, B, LDB, DUMMY )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CQRT15
 | |
| *
 | |
|       END
 |