231 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			231 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CQRT12
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       REAL             FUNCTION CQRT12( M, N, A, LDA, S, WORK, LWORK,
 | |
| *                        RWORK )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDA, LWORK, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               RWORK( * ), S( * )
 | |
| *       COMPLEX            A( LDA, * ), WORK( LWORK )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CQRT12 computes the singular values `svlues' of the upper trapezoid
 | |
| *> of A(1:M,1:N) and returns the ratio
 | |
| *>
 | |
| *>      || s - svlues||/(||svlues||*eps*max(M,N))
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          The M-by-N matrix A. Only the upper trapezoid is referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] S
 | |
| *> \verbatim
 | |
| *>          S is REAL array, dimension (min(M,N))
 | |
| *>          The singular values of the matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The length of the array WORK. LWORK >= M*N + 2*min(M,N) +
 | |
| *>          max(M,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (4*min(M,N))
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       REAL             FUNCTION CQRT12( M, N, A, LDA, S, WORK, LWORK,
 | |
|      $                 RWORK )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDA, LWORK, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               RWORK( * ), S( * )
 | |
|       COMPLEX            A( LDA, * ), WORK( LWORK )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, INFO, ISCL, J, MN
 | |
|       REAL               ANRM, BIGNUM, NRMSVL, SMLNUM
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       REAL               DUMMY( 1 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               CLANGE, SASUM, SLAMCH, SNRM2
 | |
|       EXTERNAL           CLANGE, SASUM, SLAMCH, SNRM2
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGEBD2, CLASCL, CLASET, SAXPY, SBDSQR, SLABAD,
 | |
|      $                   SLASCL, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          CMPLX, MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       CQRT12 = ZERO
 | |
| *
 | |
| *     Test that enough workspace is supplied
 | |
| *
 | |
|       IF( LWORK.LT.M*N+2*MIN( M, N )+MAX( M, N ) ) THEN
 | |
|          CALL XERBLA( 'CQRT12', 7 )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       MN = MIN( M, N )
 | |
|       IF( MN.LE.ZERO )
 | |
|      $   RETURN
 | |
| *
 | |
|       NRMSVL = SNRM2( MN, S, 1 )
 | |
| *
 | |
| *     Copy upper triangle of A into work
 | |
| *
 | |
|       CALL CLASET( 'Full', M, N, CMPLX( ZERO ), CMPLX( ZERO ), WORK, M )
 | |
|       DO 20 J = 1, N
 | |
|          DO 10 I = 1, MIN( J, M )
 | |
|             WORK( ( J-1 )*M+I ) = A( I, J )
 | |
|    10    CONTINUE
 | |
|    20 CONTINUE
 | |
| *
 | |
| *     Get machine parameters
 | |
| *
 | |
|       SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL SLABAD( SMLNUM, BIGNUM )
 | |
| *
 | |
| *     Scale work if max entry outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       ANRM = CLANGE( 'M', M, N, WORK, M, DUMMY )
 | |
|       ISCL = 0
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm up to SMLNUM
 | |
| *
 | |
|          CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, WORK, M, INFO )
 | |
|          ISCL = 1
 | |
|       ELSE IF( ANRM.GT.BIGNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm down to BIGNUM
 | |
| *
 | |
|          CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, WORK, M, INFO )
 | |
|          ISCL = 1
 | |
|       END IF
 | |
| *
 | |
|       IF( ANRM.NE.ZERO ) THEN
 | |
| *
 | |
| *        Compute SVD of work
 | |
| *
 | |
|          CALL CGEBD2( M, N, WORK, M, RWORK( 1 ), RWORK( MN+1 ),
 | |
|      $                WORK( M*N+1 ), WORK( M*N+MN+1 ),
 | |
|      $                WORK( M*N+2*MN+1 ), INFO )
 | |
|          CALL SBDSQR( 'Upper', MN, 0, 0, 0, RWORK( 1 ), RWORK( MN+1 ),
 | |
|      $                DUMMY, MN, DUMMY, 1, DUMMY, MN, RWORK( 2*MN+1 ),
 | |
|      $                INFO )
 | |
| *
 | |
|          IF( ISCL.EQ.1 ) THEN
 | |
|             IF( ANRM.GT.BIGNUM ) THEN
 | |
|                CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MN, 1, RWORK( 1 ),
 | |
|      $                      MN, INFO )
 | |
|             END IF
 | |
|             IF( ANRM.LT.SMLNUM ) THEN
 | |
|                CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MN, 1, RWORK( 1 ),
 | |
|      $                      MN, INFO )
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
|          DO 30 I = 1, MN
 | |
|             RWORK( I ) = ZERO
 | |
|    30    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Compare s and singular values of work
 | |
| *
 | |
|       CALL SAXPY( MN, -ONE, S, 1, RWORK( 1 ), 1 )
 | |
|       CQRT12 = SASUM( MN, RWORK( 1 ), 1 ) /
 | |
|      $         ( SLAMCH( 'Epsilon' )*REAL( MAX( M, N ) ) )
 | |
|       IF( NRMSVL.NE.ZERO )
 | |
|      $   CQRT12 = CQRT12 / NRMSVL
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CQRT12
 | |
| *
 | |
|       END
 |