269 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			269 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CPBT01
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CPBT01( UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK,
 | |
| *                          RESID )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            KD, LDA, LDAFAC, N
 | |
| *       REAL               RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               RWORK( * )
 | |
| *       COMPLEX            A( LDA, * ), AFAC( LDAFAC, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CPBT01 reconstructs a Hermitian positive definite band matrix A from
 | |
| *> its L*L' or U'*U factorization and computes the residual
 | |
| *>    norm( L*L' - A ) / ( N * norm(A) * EPS ) or
 | |
| *>    norm( U'*U - A ) / ( N * norm(A) * EPS ),
 | |
| *> where EPS is the machine epsilon, L' is the conjugate transpose of
 | |
| *> L, and U' is the conjugate transpose of U.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          Hermitian matrix A is stored:
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of rows and columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KD
 | |
| *> \verbatim
 | |
| *>          KD is INTEGER
 | |
| *>          The number of super-diagonals of the matrix A if UPLO = 'U',
 | |
| *>          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          The original Hermitian band matrix A.  If UPLO = 'U', the
 | |
| *>          upper triangular part of A is stored as a band matrix; if
 | |
| *>          UPLO = 'L', the lower triangular part of A is stored.  The
 | |
| *>          columns of the appropriate triangle are stored in the columns
 | |
| *>          of A and the diagonals of the triangle are stored in the rows
 | |
| *>          of A.  See CPBTRF for further details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER.
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,KD+1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AFAC
 | |
| *> \verbatim
 | |
| *>          AFAC is COMPLEX array, dimension (LDAFAC,N)
 | |
| *>          The factored form of the matrix A.  AFAC contains the factor
 | |
| *>          L or U from the L*L' or U'*U factorization in band storage
 | |
| *>          format, as computed by CPBTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAFAC
 | |
| *> \verbatim
 | |
| *>          LDAFAC is INTEGER
 | |
| *>          The leading dimension of the array AFAC.
 | |
| *>          LDAFAC >= max(1,KD+1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is REAL
 | |
| *>          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
 | |
| *>          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CPBT01( UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK,
 | |
|      $                   RESID )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            KD, LDA, LDAFAC, N
 | |
|       REAL               RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               RWORK( * )
 | |
|       COMPLEX            A( LDA, * ), AFAC( LDAFAC, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J, K, KC, KLEN, ML, MU
 | |
|       REAL               AKK, ANORM, EPS
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               CLANHB, SLAMCH
 | |
|       COMPLEX            CDOTC
 | |
|       EXTERNAL           LSAME, CLANHB, SLAMCH, CDOTC
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CHER, CSSCAL, CTRMV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          AIMAG, MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if N = 0.
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Exit with RESID = 1/EPS if ANORM = 0.
 | |
| *
 | |
|       EPS = SLAMCH( 'Epsilon' )
 | |
|       ANORM = CLANHB( '1', UPLO, N, KD, A, LDA, RWORK )
 | |
|       IF( ANORM.LE.ZERO ) THEN
 | |
|          RESID = ONE / EPS
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Check the imaginary parts of the diagonal elements and return with
 | |
| *     an error code if any are nonzero.
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|          DO 10 J = 1, N
 | |
|             IF( AIMAG( AFAC( KD+1, J ) ).NE.ZERO ) THEN
 | |
|                RESID = ONE / EPS
 | |
|                RETURN
 | |
|             END IF
 | |
|    10    CONTINUE
 | |
|       ELSE
 | |
|          DO 20 J = 1, N
 | |
|             IF( AIMAG( AFAC( 1, J ) ).NE.ZERO ) THEN
 | |
|                RESID = ONE / EPS
 | |
|                RETURN
 | |
|             END IF
 | |
|    20    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Compute the product U'*U, overwriting U.
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|          DO 30 K = N, 1, -1
 | |
|             KC = MAX( 1, KD+2-K )
 | |
|             KLEN = KD + 1 - KC
 | |
| *
 | |
| *           Compute the (K,K) element of the result.
 | |
| *
 | |
|             AKK = CDOTC( KLEN+1, AFAC( KC, K ), 1, AFAC( KC, K ), 1 )
 | |
|             AFAC( KD+1, K ) = AKK
 | |
| *
 | |
| *           Compute the rest of column K.
 | |
| *
 | |
|             IF( KLEN.GT.0 )
 | |
|      $         CALL CTRMV( 'Upper', 'Conjugate', 'Non-unit', KLEN,
 | |
|      $                     AFAC( KD+1, K-KLEN ), LDAFAC-1,
 | |
|      $                     AFAC( KC, K ), 1 )
 | |
| *
 | |
|    30    CONTINUE
 | |
| *
 | |
| *     UPLO = 'L':  Compute the product L*L', overwriting L.
 | |
| *
 | |
|       ELSE
 | |
|          DO 40 K = N, 1, -1
 | |
|             KLEN = MIN( KD, N-K )
 | |
| *
 | |
| *           Add a multiple of column K of the factor L to each of
 | |
| *           columns K+1 through N.
 | |
| *
 | |
|             IF( KLEN.GT.0 )
 | |
|      $         CALL CHER( 'Lower', KLEN, ONE, AFAC( 2, K ), 1,
 | |
|      $                    AFAC( 1, K+1 ), LDAFAC-1 )
 | |
| *
 | |
| *           Scale column K by the diagonal element.
 | |
| *
 | |
|             AKK = AFAC( 1, K )
 | |
|             CALL CSSCAL( KLEN+1, AKK, AFAC( 1, K ), 1 )
 | |
| *
 | |
|    40    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Compute the difference  L*L' - A  or  U'*U - A.
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|          DO 60 J = 1, N
 | |
|             MU = MAX( 1, KD+2-J )
 | |
|             DO 50 I = MU, KD + 1
 | |
|                AFAC( I, J ) = AFAC( I, J ) - A( I, J )
 | |
|    50       CONTINUE
 | |
|    60    CONTINUE
 | |
|       ELSE
 | |
|          DO 80 J = 1, N
 | |
|             ML = MIN( KD+1, N-J+1 )
 | |
|             DO 70 I = 1, ML
 | |
|                AFAC( I, J ) = AFAC( I, J ) - A( I, J )
 | |
|    70       CONTINUE
 | |
|    80    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Compute norm( L*L' - A ) / ( N * norm(A) * EPS )
 | |
| *
 | |
|       RESID = CLANHB( '1', UPLO, N, KD, AFAC, LDAFAC, RWORK )
 | |
| *
 | |
|       RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CPBT01
 | |
| *
 | |
|       END
 |