268 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			268 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLAPTM
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CLAPTM( UPLO, N, NRHS, ALPHA, D, E, X, LDX, BETA, B,
 | |
| *                          LDB )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            LDB, LDX, N, NRHS
 | |
| *       REAL               ALPHA, BETA
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               D( * )
 | |
| *       COMPLEX            B( LDB, * ), E( * ), X( LDX, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CLAPTM multiplies an N by NRHS matrix X by a Hermitian tridiagonal
 | |
| *> matrix A and stores the result in a matrix B.  The operation has the
 | |
| *> form
 | |
| *>
 | |
| *>    B := alpha * A * X + beta * B
 | |
| *>
 | |
| *> where alpha may be either 1. or -1. and beta may be 0., 1., or -1.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER
 | |
| *>          Specifies whether the superdiagonal or the subdiagonal of the
 | |
| *>          tridiagonal matrix A is stored.
 | |
| *>          = 'U':  Upper, E is the superdiagonal of A.
 | |
| *>          = 'L':  Lower, E is the subdiagonal of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrices X and B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is REAL
 | |
| *>          The scalar alpha.  ALPHA must be 1. or -1.; otherwise,
 | |
| *>          it is assumed to be 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>          The n diagonal elements of the tridiagonal matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is COMPLEX array, dimension (N-1)
 | |
| *>          The (n-1) subdiagonal or superdiagonal elements of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX array, dimension (LDX,NRHS)
 | |
| *>          The N by NRHS matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX
 | |
| *> \verbatim
 | |
| *>          LDX is INTEGER
 | |
| *>          The leading dimension of the array X.  LDX >= max(N,1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is REAL
 | |
| *>          The scalar beta.  BETA must be 0., 1., or -1.; otherwise,
 | |
| *>          it is assumed to be 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB,NRHS)
 | |
| *>          On entry, the N by NRHS matrix B.
 | |
| *>          On exit, B is overwritten by the matrix expression
 | |
| *>          B := alpha * A * X + beta * B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(N,1).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLAPTM( UPLO, N, NRHS, ALPHA, D, E, X, LDX, BETA, B,
 | |
|      $                   LDB )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            LDB, LDX, N, NRHS
 | |
|       REAL               ALPHA, BETA
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               D( * )
 | |
|       COMPLEX            B( LDB, * ), E( * ), X( LDX, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          CONJG
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( BETA.EQ.ZERO ) THEN
 | |
|          DO 20 J = 1, NRHS
 | |
|             DO 10 I = 1, N
 | |
|                B( I, J ) = ZERO
 | |
|    10       CONTINUE
 | |
|    20    CONTINUE
 | |
|       ELSE IF( BETA.EQ.-ONE ) THEN
 | |
|          DO 40 J = 1, NRHS
 | |
|             DO 30 I = 1, N
 | |
|                B( I, J ) = -B( I, J )
 | |
|    30       CONTINUE
 | |
|    40    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       IF( ALPHA.EQ.ONE ) THEN
 | |
|          IF( LSAME( UPLO, 'U' ) ) THEN
 | |
| *
 | |
| *           Compute B := B + A*X, where E is the superdiagonal of A.
 | |
| *
 | |
|             DO 60 J = 1, NRHS
 | |
|                IF( N.EQ.1 ) THEN
 | |
|                   B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
 | |
|                ELSE
 | |
|                   B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
 | |
|      $                        E( 1 )*X( 2, J )
 | |
|                   B( N, J ) = B( N, J ) + CONJG( E( N-1 ) )*
 | |
|      $                        X( N-1, J ) + D( N )*X( N, J )
 | |
|                   DO 50 I = 2, N - 1
 | |
|                      B( I, J ) = B( I, J ) + CONJG( E( I-1 ) )*
 | |
|      $                           X( I-1, J ) + D( I )*X( I, J ) +
 | |
|      $                           E( I )*X( I+1, J )
 | |
|    50             CONTINUE
 | |
|                END IF
 | |
|    60       CONTINUE
 | |
|          ELSE
 | |
| *
 | |
| *           Compute B := B + A*X, where E is the subdiagonal of A.
 | |
| *
 | |
|             DO 80 J = 1, NRHS
 | |
|                IF( N.EQ.1 ) THEN
 | |
|                   B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
 | |
|                ELSE
 | |
|                   B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
 | |
|      $                        CONJG( E( 1 ) )*X( 2, J )
 | |
|                   B( N, J ) = B( N, J ) + E( N-1 )*X( N-1, J ) +
 | |
|      $                        D( N )*X( N, J )
 | |
|                   DO 70 I = 2, N - 1
 | |
|                      B( I, J ) = B( I, J ) + E( I-1 )*X( I-1, J ) +
 | |
|      $                           D( I )*X( I, J ) +
 | |
|      $                           CONJG( E( I ) )*X( I+1, J )
 | |
|    70             CONTINUE
 | |
|                END IF
 | |
|    80       CONTINUE
 | |
|          END IF
 | |
|       ELSE IF( ALPHA.EQ.-ONE ) THEN
 | |
|          IF( LSAME( UPLO, 'U' ) ) THEN
 | |
| *
 | |
| *           Compute B := B - A*X, where E is the superdiagonal of A.
 | |
| *
 | |
|             DO 100 J = 1, NRHS
 | |
|                IF( N.EQ.1 ) THEN
 | |
|                   B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
 | |
|                ELSE
 | |
|                   B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
 | |
|      $                        E( 1 )*X( 2, J )
 | |
|                   B( N, J ) = B( N, J ) - CONJG( E( N-1 ) )*
 | |
|      $                        X( N-1, J ) - D( N )*X( N, J )
 | |
|                   DO 90 I = 2, N - 1
 | |
|                      B( I, J ) = B( I, J ) - CONJG( E( I-1 ) )*
 | |
|      $                           X( I-1, J ) - D( I )*X( I, J ) -
 | |
|      $                           E( I )*X( I+1, J )
 | |
|    90             CONTINUE
 | |
|                END IF
 | |
|   100       CONTINUE
 | |
|          ELSE
 | |
| *
 | |
| *           Compute B := B - A*X, where E is the subdiagonal of A.
 | |
| *
 | |
|             DO 120 J = 1, NRHS
 | |
|                IF( N.EQ.1 ) THEN
 | |
|                   B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
 | |
|                ELSE
 | |
|                   B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
 | |
|      $                        CONJG( E( 1 ) )*X( 2, J )
 | |
|                   B( N, J ) = B( N, J ) - E( N-1 )*X( N-1, J ) -
 | |
|      $                        D( N )*X( N, J )
 | |
|                   DO 110 I = 2, N - 1
 | |
|                      B( I, J ) = B( I, J ) - E( I-1 )*X( I-1, J ) -
 | |
|      $                           D( I )*X( I, J ) -
 | |
|      $                           CONJG( E( I ) )*X( I+1, J )
 | |
|   110             CONTINUE
 | |
|                END IF
 | |
|   120       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLAPTM
 | |
| *
 | |
|       END
 |