400 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			400 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DSYR2K
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       DOUBLE PRECISION ALPHA,BETA
 | |
| *       INTEGER K,LDA,LDB,LDC,N
 | |
| *       CHARACTER TRANS,UPLO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DSYR2K  performs one of the symmetric rank 2k operations
 | |
| *>
 | |
| *>    C := alpha*A*B**T + alpha*B*A**T + beta*C,
 | |
| *>
 | |
| *> or
 | |
| *>
 | |
| *>    C := alpha*A**T*B + alpha*B**T*A + beta*C,
 | |
| *>
 | |
| *> where  alpha and beta  are scalars, C is an  n by n  symmetric matrix
 | |
| *> and  A and B  are  n by k  matrices  in the  first  case  and  k by n
 | |
| *> matrices in the second case.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
 | |
| *>           triangular  part  of the  array  C  is to be  referenced  as
 | |
| *>           follows:
 | |
| *>
 | |
| *>              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
 | |
| *>                                  is to be referenced.
 | |
| *>
 | |
| *>              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
 | |
| *>                                  is to be referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>           On entry,  TRANS  specifies the operation to be performed as
 | |
| *>           follows:
 | |
| *>
 | |
| *>              TRANS = 'N' or 'n'   C := alpha*A*B**T + alpha*B*A**T +
 | |
| *>                                        beta*C.
 | |
| *>
 | |
| *>              TRANS = 'T' or 't'   C := alpha*A**T*B + alpha*B**T*A +
 | |
| *>                                        beta*C.
 | |
| *>
 | |
| *>              TRANS = 'C' or 'c'   C := alpha*A**T*B + alpha*B**T*A +
 | |
| *>                                        beta*C.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           On entry,  N specifies the order of the matrix C.  N must be
 | |
| *>           at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
 | |
| *>           of  columns  of the  matrices  A and B,  and on  entry  with
 | |
| *>           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number
 | |
| *>           of rows of the matrices  A and B.  K must be at least  zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is DOUBLE PRECISION.
 | |
| *>           On entry, ALPHA specifies the scalar alpha.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
 | |
| *>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
 | |
| *>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
 | |
| *>           part of the array  A  must contain the matrix  A,  otherwise
 | |
| *>           the leading  k by n  part of the array  A  must contain  the
 | |
| *>           matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>           On entry, LDA specifies the first dimension of A as declared
 | |
| *>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
 | |
| *>           then  LDA must be at least  max( 1, n ), otherwise  LDA must
 | |
| *>           be at least  max( 1, k ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is
 | |
| *>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
 | |
| *>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
 | |
| *>           part of the array  B  must contain the matrix  B,  otherwise
 | |
| *>           the leading  k by n  part of the array  B  must contain  the
 | |
| *>           matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>           On entry, LDB specifies the first dimension of B as declared
 | |
| *>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
 | |
| *>           then  LDB must be at least  max( 1, n ), otherwise  LDB must
 | |
| *>           be at least  max( 1, k ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is DOUBLE PRECISION.
 | |
| *>           On entry, BETA specifies the scalar beta.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] C
 | |
| *> \verbatim
 | |
| *>          C is DOUBLE PRECISION array of DIMENSION ( LDC, n ).
 | |
| *>           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
 | |
| *>           upper triangular part of the array C must contain the upper
 | |
| *>           triangular part  of the  symmetric matrix  and the strictly
 | |
| *>           lower triangular part of C is not referenced.  On exit, the
 | |
| *>           upper triangular part of the array  C is overwritten by the
 | |
| *>           upper triangular part of the updated matrix.
 | |
| *>           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
 | |
| *>           lower triangular part of the array C must contain the lower
 | |
| *>           triangular part  of the  symmetric matrix  and the strictly
 | |
| *>           upper triangular part of C is not referenced.  On exit, the
 | |
| *>           lower triangular part of the array  C is overwritten by the
 | |
| *>           lower triangular part of the updated matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>           On entry, LDC specifies the first dimension of C as declared
 | |
| *>           in  the  calling  (sub)  program.   LDC  must  be  at  least
 | |
| *>           max( 1, n ).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup double_blas_level3
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Level 3 Blas routine.
 | |
| *>
 | |
| *>
 | |
| *>  -- Written on 8-February-1989.
 | |
| *>     Jack Dongarra, Argonne National Laboratory.
 | |
| *>     Iain Duff, AERE Harwell.
 | |
| *>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
 | |
| *>     Sven Hammarling, Numerical Algorithms Group Ltd.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
 | |
| *
 | |
| *  -- Reference BLAS level3 routine (version 3.4.0) --
 | |
| *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       DOUBLE PRECISION ALPHA,BETA
 | |
|       INTEGER K,LDA,LDB,LDC,N
 | |
|       CHARACTER TRANS,UPLO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. External Functions ..
 | |
|       LOGICAL LSAME
 | |
|       EXTERNAL LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC MAX
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       DOUBLE PRECISION TEMP1,TEMP2
 | |
|       INTEGER I,INFO,J,L,NROWA
 | |
|       LOGICAL UPPER
 | |
| *     ..
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION ONE,ZERO
 | |
|       PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
 | |
| *     ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       IF (LSAME(TRANS,'N')) THEN
 | |
|           NROWA = N
 | |
|       ELSE
 | |
|           NROWA = K
 | |
|       END IF
 | |
|       UPPER = LSAME(UPLO,'U')
 | |
| *
 | |
|       INFO = 0
 | |
|       IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
 | |
|           INFO = 1
 | |
|       ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND.
 | |
|      +         (.NOT.LSAME(TRANS,'T')) .AND.
 | |
|      +         (.NOT.LSAME(TRANS,'C'))) THEN
 | |
|           INFO = 2
 | |
|       ELSE IF (N.LT.0) THEN
 | |
|           INFO = 3
 | |
|       ELSE IF (K.LT.0) THEN
 | |
|           INFO = 4
 | |
|       ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
 | |
|           INFO = 7
 | |
|       ELSE IF (LDB.LT.MAX(1,NROWA)) THEN
 | |
|           INFO = 9
 | |
|       ELSE IF (LDC.LT.MAX(1,N)) THEN
 | |
|           INFO = 12
 | |
|       END IF
 | |
|       IF (INFO.NE.0) THEN
 | |
|           CALL XERBLA('DSYR2K',INFO)
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR.
 | |
|      +    (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
 | |
| *
 | |
| *     And when  alpha.eq.zero.
 | |
| *
 | |
|       IF (ALPHA.EQ.ZERO) THEN
 | |
|           IF (UPPER) THEN
 | |
|               IF (BETA.EQ.ZERO) THEN
 | |
|                   DO 20 J = 1,N
 | |
|                       DO 10 I = 1,J
 | |
|                           C(I,J) = ZERO
 | |
|    10                 CONTINUE
 | |
|    20             CONTINUE
 | |
|               ELSE
 | |
|                   DO 40 J = 1,N
 | |
|                       DO 30 I = 1,J
 | |
|                           C(I,J) = BETA*C(I,J)
 | |
|    30                 CONTINUE
 | |
|    40             CONTINUE
 | |
|               END IF
 | |
|           ELSE
 | |
|               IF (BETA.EQ.ZERO) THEN
 | |
|                   DO 60 J = 1,N
 | |
|                       DO 50 I = J,N
 | |
|                           C(I,J) = ZERO
 | |
|    50                 CONTINUE
 | |
|    60             CONTINUE
 | |
|               ELSE
 | |
|                   DO 80 J = 1,N
 | |
|                       DO 70 I = J,N
 | |
|                           C(I,J) = BETA*C(I,J)
 | |
|    70                 CONTINUE
 | |
|    80             CONTINUE
 | |
|               END IF
 | |
|           END IF
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations.
 | |
| *
 | |
|       IF (LSAME(TRANS,'N')) THEN
 | |
| *
 | |
| *        Form  C := alpha*A*B**T + alpha*B*A**T + C.
 | |
| *
 | |
|           IF (UPPER) THEN
 | |
|               DO 130 J = 1,N
 | |
|                   IF (BETA.EQ.ZERO) THEN
 | |
|                       DO 90 I = 1,J
 | |
|                           C(I,J) = ZERO
 | |
|    90                 CONTINUE
 | |
|                   ELSE IF (BETA.NE.ONE) THEN
 | |
|                       DO 100 I = 1,J
 | |
|                           C(I,J) = BETA*C(I,J)
 | |
|   100                 CONTINUE
 | |
|                   END IF
 | |
|                   DO 120 L = 1,K
 | |
|                       IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN
 | |
|                           TEMP1 = ALPHA*B(J,L)
 | |
|                           TEMP2 = ALPHA*A(J,L)
 | |
|                           DO 110 I = 1,J
 | |
|                               C(I,J) = C(I,J) + A(I,L)*TEMP1 +
 | |
|      +                                 B(I,L)*TEMP2
 | |
|   110                     CONTINUE
 | |
|                       END IF
 | |
|   120             CONTINUE
 | |
|   130         CONTINUE
 | |
|           ELSE
 | |
|               DO 180 J = 1,N
 | |
|                   IF (BETA.EQ.ZERO) THEN
 | |
|                       DO 140 I = J,N
 | |
|                           C(I,J) = ZERO
 | |
|   140                 CONTINUE
 | |
|                   ELSE IF (BETA.NE.ONE) THEN
 | |
|                       DO 150 I = J,N
 | |
|                           C(I,J) = BETA*C(I,J)
 | |
|   150                 CONTINUE
 | |
|                   END IF
 | |
|                   DO 170 L = 1,K
 | |
|                       IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN
 | |
|                           TEMP1 = ALPHA*B(J,L)
 | |
|                           TEMP2 = ALPHA*A(J,L)
 | |
|                           DO 160 I = J,N
 | |
|                               C(I,J) = C(I,J) + A(I,L)*TEMP1 +
 | |
|      +                                 B(I,L)*TEMP2
 | |
|   160                     CONTINUE
 | |
|                       END IF
 | |
|   170             CONTINUE
 | |
|   180         CONTINUE
 | |
|           END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  C := alpha*A**T*B + alpha*B**T*A + C.
 | |
| *
 | |
|           IF (UPPER) THEN
 | |
|               DO 210 J = 1,N
 | |
|                   DO 200 I = 1,J
 | |
|                       TEMP1 = ZERO
 | |
|                       TEMP2 = ZERO
 | |
|                       DO 190 L = 1,K
 | |
|                           TEMP1 = TEMP1 + A(L,I)*B(L,J)
 | |
|                           TEMP2 = TEMP2 + B(L,I)*A(L,J)
 | |
|   190                 CONTINUE
 | |
|                       IF (BETA.EQ.ZERO) THEN
 | |
|                           C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2
 | |
|                       ELSE
 | |
|                           C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 +
 | |
|      +                             ALPHA*TEMP2
 | |
|                       END IF
 | |
|   200             CONTINUE
 | |
|   210         CONTINUE
 | |
|           ELSE
 | |
|               DO 240 J = 1,N
 | |
|                   DO 230 I = J,N
 | |
|                       TEMP1 = ZERO
 | |
|                       TEMP2 = ZERO
 | |
|                       DO 220 L = 1,K
 | |
|                           TEMP1 = TEMP1 + A(L,I)*B(L,J)
 | |
|                           TEMP2 = TEMP2 + B(L,I)*A(L,J)
 | |
|   220                 CONTINUE
 | |
|                       IF (BETA.EQ.ZERO) THEN
 | |
|                           C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2
 | |
|                       ELSE
 | |
|                           C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 +
 | |
|      +                             ALPHA*TEMP2
 | |
|                       END IF
 | |
|   230             CONTINUE
 | |
|   240         CONTINUE
 | |
|           END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DSYR2K.
 | |
| *
 | |
|       END
 |