371 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			371 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DGBMV
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       DOUBLE PRECISION ALPHA,BETA
 | |
| *       INTEGER INCX,INCY,KL,KU,LDA,M,N
 | |
| *       CHARACTER TRANS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION A(LDA,*),X(*),Y(*)
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGBMV  performs one of the matrix-vector operations
 | |
| *>
 | |
| *>    y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,
 | |
| *>
 | |
| *> where alpha and beta are scalars, x and y are vectors and A is an
 | |
| *> m by n band matrix, with kl sub-diagonals and ku super-diagonals.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>           On entry, TRANS specifies the operation to be performed as
 | |
| *>           follows:
 | |
| *>
 | |
| *>              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
 | |
| *>
 | |
| *>              TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y.
 | |
| *>
 | |
| *>              TRANS = 'C' or 'c'   y := alpha*A**T*x + beta*y.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>           On entry, M specifies the number of rows of the matrix A.
 | |
| *>           M must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           On entry, N specifies the number of columns of the matrix A.
 | |
| *>           N must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KL
 | |
| *> \verbatim
 | |
| *>          KL is INTEGER
 | |
| *>           On entry, KL specifies the number of sub-diagonals of the
 | |
| *>           matrix A. KL must satisfy  0 .le. KL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KU
 | |
| *> \verbatim
 | |
| *>          KU is INTEGER
 | |
| *>           On entry, KU specifies the number of super-diagonals of the
 | |
| *>           matrix A. KU must satisfy  0 .le. KU.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is DOUBLE PRECISION.
 | |
| *>           On entry, ALPHA specifies the scalar alpha.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array of DIMENSION ( LDA, n ).
 | |
| *>           Before entry, the leading ( kl + ku + 1 ) by n part of the
 | |
| *>           array A must contain the matrix of coefficients, supplied
 | |
| *>           column by column, with the leading diagonal of the matrix in
 | |
| *>           row ( ku + 1 ) of the array, the first super-diagonal
 | |
| *>           starting at position 2 in row ku, the first sub-diagonal
 | |
| *>           starting at position 1 in row ( ku + 2 ), and so on.
 | |
| *>           Elements in the array A that do not correspond to elements
 | |
| *>           in the band matrix (such as the top left ku by ku triangle)
 | |
| *>           are not referenced.
 | |
| *>           The following program segment will transfer a band matrix
 | |
| *>           from conventional full matrix storage to band storage:
 | |
| *>
 | |
| *>                 DO 20, J = 1, N
 | |
| *>                    K = KU + 1 - J
 | |
| *>                    DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
 | |
| *>                       A( K + I, J ) = matrix( I, J )
 | |
| *>              10    CONTINUE
 | |
| *>              20 CONTINUE
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>           On entry, LDA specifies the first dimension of A as declared
 | |
| *>           in the calling (sub) program. LDA must be at least
 | |
| *>           ( kl + ku + 1 ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is DOUBLE PRECISION array of DIMENSION at least
 | |
| *>           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
 | |
| *>           and at least
 | |
| *>           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
 | |
| *>           Before entry, the incremented array X must contain the
 | |
| *>           vector x.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCX
 | |
| *> \verbatim
 | |
| *>          INCX is INTEGER
 | |
| *>           On entry, INCX specifies the increment for the elements of
 | |
| *>           X. INCX must not be zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is DOUBLE PRECISION.
 | |
| *>           On entry, BETA specifies the scalar beta. When BETA is
 | |
| *>           supplied as zero then Y need not be set on input.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Y
 | |
| *> \verbatim
 | |
| *>          Y is DOUBLE PRECISION array of DIMENSION at least
 | |
| *>           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
 | |
| *>           and at least
 | |
| *>           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
 | |
| *>           Before entry, the incremented array Y must contain the
 | |
| *>           vector y. On exit, Y is overwritten by the updated vector y.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCY
 | |
| *> \verbatim
 | |
| *>          INCY is INTEGER
 | |
| *>           On entry, INCY specifies the increment for the elements of
 | |
| *>           Y. INCY must not be zero.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2015
 | |
| *
 | |
| *> \ingroup double_blas_level2
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Level 2 Blas routine.
 | |
| *>  The vector and matrix arguments are not referenced when N = 0, or M = 0
 | |
| *>
 | |
| *>  -- Written on 22-October-1986.
 | |
| *>     Jack Dongarra, Argonne National Lab.
 | |
| *>     Jeremy Du Croz, Nag Central Office.
 | |
| *>     Sven Hammarling, Nag Central Office.
 | |
| *>     Richard Hanson, Sandia National Labs.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
 | |
| *
 | |
| *  -- Reference BLAS level2 routine (version 3.6.0) --
 | |
| *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2015
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       DOUBLE PRECISION ALPHA,BETA
 | |
|       INTEGER INCX,INCY,KL,KU,LDA,M,N
 | |
|       CHARACTER TRANS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION A(LDA,*),X(*),Y(*)
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION ONE,ZERO
 | |
|       PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       DOUBLE PRECISION TEMP
 | |
|       INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL LSAME
 | |
|       EXTERNAL LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC MAX,MIN
 | |
| *     ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
 | |
|      +    .NOT.LSAME(TRANS,'C')) THEN
 | |
|           INFO = 1
 | |
|       ELSE IF (M.LT.0) THEN
 | |
|           INFO = 2
 | |
|       ELSE IF (N.LT.0) THEN
 | |
|           INFO = 3
 | |
|       ELSE IF (KL.LT.0) THEN
 | |
|           INFO = 4
 | |
|       ELSE IF (KU.LT.0) THEN
 | |
|           INFO = 5
 | |
|       ELSE IF (LDA.LT. (KL+KU+1)) THEN
 | |
|           INFO = 8
 | |
|       ELSE IF (INCX.EQ.0) THEN
 | |
|           INFO = 10
 | |
|       ELSE IF (INCY.EQ.0) THEN
 | |
|           INFO = 13
 | |
|       END IF
 | |
|       IF (INFO.NE.0) THEN
 | |
|           CALL XERBLA('DGBMV ',INFO)
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
 | |
|      +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
 | |
| *
 | |
| *     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
 | |
| *     up the start points in  X  and  Y.
 | |
| *
 | |
|       IF (LSAME(TRANS,'N')) THEN
 | |
|           LENX = N
 | |
|           LENY = M
 | |
|       ELSE
 | |
|           LENX = M
 | |
|           LENY = N
 | |
|       END IF
 | |
|       IF (INCX.GT.0) THEN
 | |
|           KX = 1
 | |
|       ELSE
 | |
|           KX = 1 - (LENX-1)*INCX
 | |
|       END IF
 | |
|       IF (INCY.GT.0) THEN
 | |
|           KY = 1
 | |
|       ELSE
 | |
|           KY = 1 - (LENY-1)*INCY
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations. In this version the elements of A are
 | |
| *     accessed sequentially with one pass through the band part of A.
 | |
| *
 | |
| *     First form  y := beta*y.
 | |
| *
 | |
|       IF (BETA.NE.ONE) THEN
 | |
|           IF (INCY.EQ.1) THEN
 | |
|               IF (BETA.EQ.ZERO) THEN
 | |
|                   DO 10 I = 1,LENY
 | |
|                       Y(I) = ZERO
 | |
|    10             CONTINUE
 | |
|               ELSE
 | |
|                   DO 20 I = 1,LENY
 | |
|                       Y(I) = BETA*Y(I)
 | |
|    20             CONTINUE
 | |
|               END IF
 | |
|           ELSE
 | |
|               IY = KY
 | |
|               IF (BETA.EQ.ZERO) THEN
 | |
|                   DO 30 I = 1,LENY
 | |
|                       Y(IY) = ZERO
 | |
|                       IY = IY + INCY
 | |
|    30             CONTINUE
 | |
|               ELSE
 | |
|                   DO 40 I = 1,LENY
 | |
|                       Y(IY) = BETA*Y(IY)
 | |
|                       IY = IY + INCY
 | |
|    40             CONTINUE
 | |
|               END IF
 | |
|           END IF
 | |
|       END IF
 | |
|       IF (ALPHA.EQ.ZERO) RETURN
 | |
|       KUP1 = KU + 1
 | |
|       IF (LSAME(TRANS,'N')) THEN
 | |
| *
 | |
| *        Form  y := alpha*A*x + y.
 | |
| *
 | |
|           JX = KX
 | |
|           IF (INCY.EQ.1) THEN
 | |
|               DO 60 J = 1,N
 | |
|                   TEMP = ALPHA*X(JX)
 | |
|                   K = KUP1 - J
 | |
|                   DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
 | |
|                       Y(I) = Y(I) + TEMP*A(K+I,J)
 | |
|    50             CONTINUE
 | |
|                   JX = JX + INCX
 | |
|    60         CONTINUE
 | |
|           ELSE
 | |
|               DO 80 J = 1,N
 | |
|                   TEMP = ALPHA*X(JX)
 | |
|                   IY = KY
 | |
|                   K = KUP1 - J
 | |
|                   DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
 | |
|                       Y(IY) = Y(IY) + TEMP*A(K+I,J)
 | |
|                       IY = IY + INCY
 | |
|    70             CONTINUE
 | |
|                   JX = JX + INCX
 | |
|                   IF (J.GT.KU) KY = KY + INCY
 | |
|    80         CONTINUE
 | |
|           END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  y := alpha*A**T*x + y.
 | |
| *
 | |
|           JY = KY
 | |
|           IF (INCX.EQ.1) THEN
 | |
|               DO 100 J = 1,N
 | |
|                   TEMP = ZERO
 | |
|                   K = KUP1 - J
 | |
|                   DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
 | |
|                       TEMP = TEMP + A(K+I,J)*X(I)
 | |
|    90             CONTINUE
 | |
|                   Y(JY) = Y(JY) + ALPHA*TEMP
 | |
|                   JY = JY + INCY
 | |
|   100         CONTINUE
 | |
|           ELSE
 | |
|               DO 120 J = 1,N
 | |
|                   TEMP = ZERO
 | |
|                   IX = KX
 | |
|                   K = KUP1 - J
 | |
|                   DO 110 I = MAX(1,J-KU),MIN(M,J+KL)
 | |
|                       TEMP = TEMP + A(K+I,J)*X(IX)
 | |
|                       IX = IX + INCX
 | |
|   110             CONTINUE
 | |
|                   Y(JY) = Y(JY) + ALPHA*TEMP
 | |
|                   JY = JY + INCY
 | |
|                   IF (J.GT.KU) KX = KX + INCX
 | |
|   120         CONTINUE
 | |
|           END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGBMV .
 | |
| *
 | |
|       END
 |