338 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			338 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CHEMV
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       COMPLEX ALPHA,BETA
 | |
| *       INTEGER INCX,INCY,LDA,N
 | |
| *       CHARACTER UPLO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX A(LDA,*),X(*),Y(*)
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CHEMV  performs the matrix-vector  operation
 | |
| *>
 | |
| *>    y := alpha*A*x + beta*y,
 | |
| *>
 | |
| *> where alpha and beta are scalars, x and y are n element vectors and
 | |
| *> A is an n by n hermitian matrix.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>           On entry, UPLO specifies whether the upper or lower
 | |
| *>           triangular part of the array A is to be referenced as
 | |
| *>           follows:
 | |
| *>
 | |
| *>              UPLO = 'U' or 'u'   Only the upper triangular part of A
 | |
| *>                                  is to be referenced.
 | |
| *>
 | |
| *>              UPLO = 'L' or 'l'   Only the lower triangular part of A
 | |
| *>                                  is to be referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           On entry, N specifies the order of the matrix A.
 | |
| *>           N must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is COMPLEX
 | |
| *>           On entry, ALPHA specifies the scalar alpha.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array of DIMENSION ( LDA, n ).
 | |
| *>           Before entry with  UPLO = 'U' or 'u', the leading n by n
 | |
| *>           upper triangular part of the array A must contain the upper
 | |
| *>           triangular part of the hermitian matrix and the strictly
 | |
| *>           lower triangular part of A is not referenced.
 | |
| *>           Before entry with UPLO = 'L' or 'l', the leading n by n
 | |
| *>           lower triangular part of the array A must contain the lower
 | |
| *>           triangular part of the hermitian matrix and the strictly
 | |
| *>           upper triangular part of A is not referenced.
 | |
| *>           Note that the imaginary parts of the diagonal elements need
 | |
| *>           not be set and are assumed to be zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>           On entry, LDA specifies the first dimension of A as declared
 | |
| *>           in the calling (sub) program. LDA must be at least
 | |
| *>           max( 1, n ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX array of dimension at least
 | |
| *>           ( 1 + ( n - 1 )*abs( INCX ) ).
 | |
| *>           Before entry, the incremented array X must contain the n
 | |
| *>           element vector x.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCX
 | |
| *> \verbatim
 | |
| *>          INCX is INTEGER
 | |
| *>           On entry, INCX specifies the increment for the elements of
 | |
| *>           X. INCX must not be zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is COMPLEX
 | |
| *>           On entry, BETA specifies the scalar beta. When BETA is
 | |
| *>           supplied as zero then Y need not be set on input.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Y
 | |
| *> \verbatim
 | |
| *>          Y is COMPLEX array of dimension at least
 | |
| *>           ( 1 + ( n - 1 )*abs( INCY ) ).
 | |
| *>           Before entry, the incremented array Y must contain the n
 | |
| *>           element vector y. On exit, Y is overwritten by the updated
 | |
| *>           vector y.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCY
 | |
| *> \verbatim
 | |
| *>          INCY is INTEGER
 | |
| *>           On entry, INCY specifies the increment for the elements of
 | |
| *>           Y. INCY must not be zero.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex_blas_level2
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Level 2 Blas routine.
 | |
| *>  The vector and matrix arguments are not referenced when N = 0, or M = 0
 | |
| *>
 | |
| *>  -- Written on 22-October-1986.
 | |
| *>     Jack Dongarra, Argonne National Lab.
 | |
| *>     Jeremy Du Croz, Nag Central Office.
 | |
| *>     Sven Hammarling, Nag Central Office.
 | |
| *>     Richard Hanson, Sandia National Labs.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
 | |
| *
 | |
| *  -- Reference BLAS level2 routine (version 3.4.0) --
 | |
| *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       COMPLEX ALPHA,BETA
 | |
|       INTEGER INCX,INCY,LDA,N
 | |
|       CHARACTER UPLO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX A(LDA,*),X(*),Y(*)
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX ONE
 | |
|       PARAMETER (ONE= (1.0E+0,0.0E+0))
 | |
|       COMPLEX ZERO
 | |
|       PARAMETER (ZERO= (0.0E+0,0.0E+0))
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       COMPLEX TEMP1,TEMP2
 | |
|       INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL LSAME
 | |
|       EXTERNAL LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC CONJG,MAX,REAL
 | |
| *     ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
 | |
|           INFO = 1
 | |
|       ELSE IF (N.LT.0) THEN
 | |
|           INFO = 2
 | |
|       ELSE IF (LDA.LT.MAX(1,N)) THEN
 | |
|           INFO = 5
 | |
|       ELSE IF (INCX.EQ.0) THEN
 | |
|           INFO = 7
 | |
|       ELSE IF (INCY.EQ.0) THEN
 | |
|           INFO = 10
 | |
|       END IF
 | |
|       IF (INFO.NE.0) THEN
 | |
|           CALL XERBLA('CHEMV ',INFO)
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
 | |
| *
 | |
| *     Set up the start points in  X  and  Y.
 | |
| *
 | |
|       IF (INCX.GT.0) THEN
 | |
|           KX = 1
 | |
|       ELSE
 | |
|           KX = 1 - (N-1)*INCX
 | |
|       END IF
 | |
|       IF (INCY.GT.0) THEN
 | |
|           KY = 1
 | |
|       ELSE
 | |
|           KY = 1 - (N-1)*INCY
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations. In this version the elements of A are
 | |
| *     accessed sequentially with one pass through the triangular part
 | |
| *     of A.
 | |
| *
 | |
| *     First form  y := beta*y.
 | |
| *
 | |
|       IF (BETA.NE.ONE) THEN
 | |
|           IF (INCY.EQ.1) THEN
 | |
|               IF (BETA.EQ.ZERO) THEN
 | |
|                   DO 10 I = 1,N
 | |
|                       Y(I) = ZERO
 | |
|    10             CONTINUE
 | |
|               ELSE
 | |
|                   DO 20 I = 1,N
 | |
|                       Y(I) = BETA*Y(I)
 | |
|    20             CONTINUE
 | |
|               END IF
 | |
|           ELSE
 | |
|               IY = KY
 | |
|               IF (BETA.EQ.ZERO) THEN
 | |
|                   DO 30 I = 1,N
 | |
|                       Y(IY) = ZERO
 | |
|                       IY = IY + INCY
 | |
|    30             CONTINUE
 | |
|               ELSE
 | |
|                   DO 40 I = 1,N
 | |
|                       Y(IY) = BETA*Y(IY)
 | |
|                       IY = IY + INCY
 | |
|    40             CONTINUE
 | |
|               END IF
 | |
|           END IF
 | |
|       END IF
 | |
|       IF (ALPHA.EQ.ZERO) RETURN
 | |
|       IF (LSAME(UPLO,'U')) THEN
 | |
| *
 | |
| *        Form  y  when A is stored in upper triangle.
 | |
| *
 | |
|           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
 | |
|               DO 60 J = 1,N
 | |
|                   TEMP1 = ALPHA*X(J)
 | |
|                   TEMP2 = ZERO
 | |
|                   DO 50 I = 1,J - 1
 | |
|                       Y(I) = Y(I) + TEMP1*A(I,J)
 | |
|                       TEMP2 = TEMP2 + CONJG(A(I,J))*X(I)
 | |
|    50             CONTINUE
 | |
|                   Y(J) = Y(J) + TEMP1*REAL(A(J,J)) + ALPHA*TEMP2
 | |
|    60         CONTINUE
 | |
|           ELSE
 | |
|               JX = KX
 | |
|               JY = KY
 | |
|               DO 80 J = 1,N
 | |
|                   TEMP1 = ALPHA*X(JX)
 | |
|                   TEMP2 = ZERO
 | |
|                   IX = KX
 | |
|                   IY = KY
 | |
|                   DO 70 I = 1,J - 1
 | |
|                       Y(IY) = Y(IY) + TEMP1*A(I,J)
 | |
|                       TEMP2 = TEMP2 + CONJG(A(I,J))*X(IX)
 | |
|                       IX = IX + INCX
 | |
|                       IY = IY + INCY
 | |
|    70             CONTINUE
 | |
|                   Y(JY) = Y(JY) + TEMP1*REAL(A(J,J)) + ALPHA*TEMP2
 | |
|                   JX = JX + INCX
 | |
|                   JY = JY + INCY
 | |
|    80         CONTINUE
 | |
|           END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  y  when A is stored in lower triangle.
 | |
| *
 | |
|           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
 | |
|               DO 100 J = 1,N
 | |
|                   TEMP1 = ALPHA*X(J)
 | |
|                   TEMP2 = ZERO
 | |
|                   Y(J) = Y(J) + TEMP1*REAL(A(J,J))
 | |
|                   DO 90 I = J + 1,N
 | |
|                       Y(I) = Y(I) + TEMP1*A(I,J)
 | |
|                       TEMP2 = TEMP2 + CONJG(A(I,J))*X(I)
 | |
|    90             CONTINUE
 | |
|                   Y(J) = Y(J) + ALPHA*TEMP2
 | |
|   100         CONTINUE
 | |
|           ELSE
 | |
|               JX = KX
 | |
|               JY = KY
 | |
|               DO 120 J = 1,N
 | |
|                   TEMP1 = ALPHA*X(JX)
 | |
|                   TEMP2 = ZERO
 | |
|                   Y(JY) = Y(JY) + TEMP1*REAL(A(J,J))
 | |
|                   IX = JX
 | |
|                   IY = JY
 | |
|                   DO 110 I = J + 1,N
 | |
|                       IX = IX + INCX
 | |
|                       IY = IY + INCY
 | |
|                       Y(IY) = Y(IY) + TEMP1*A(I,J)
 | |
|                       TEMP2 = TEMP2 + CONJG(A(I,J))*X(IX)
 | |
|   110             CONTINUE
 | |
|                   Y(JY) = Y(JY) + ALPHA*TEMP2
 | |
|                   JX = JX + INCX
 | |
|                   JY = JY + INCY
 | |
|   120         CONTINUE
 | |
|           END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CHEMV .
 | |
| *
 | |
|       END
 |