427 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			427 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DSTERF
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DSTERF + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsterf.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsterf.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsterf.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DSTERF( N, D, E, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   D( * ), E( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DSTERF computes all eigenvalues of a symmetric tridiagonal matrix
 | |
| *> using the Pal-Walker-Kahan variant of the QL or QR algorithm.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On entry, the n diagonal elements of the tridiagonal matrix.
 | |
| *>          On exit, if INFO = 0, the eigenvalues in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          On entry, the (n-1) subdiagonal elements of the tridiagonal
 | |
| *>          matrix.
 | |
| *>          On exit, E has been destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  the algorithm failed to find all of the eigenvalues in
 | |
| *>                a total of 30*N iterations; if INFO = i, then i
 | |
| *>                elements of E have not converged to zero.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup auxOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DSTERF( N, D, E, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   D( * ), E( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE, TWO, THREE
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
 | |
|      $                   THREE = 3.0D0 )
 | |
|       INTEGER            MAXIT
 | |
|       PARAMETER          ( MAXIT = 30 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, ISCALE, JTOT, L, L1, LEND, LENDSV, LSV, M,
 | |
|      $                   NMAXIT
 | |
|       DOUBLE PRECISION   ALPHA, ANORM, BB, C, EPS, EPS2, GAMMA, OLDC,
 | |
|      $                   OLDGAM, P, R, RT1, RT2, RTE, S, SAFMAX, SAFMIN,
 | |
|      $                   SIGMA, SSFMAX, SSFMIN, RMAX
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH, DLANST, DLAPY2
 | |
|       EXTERNAL           DLAMCH, DLANST, DLAPY2
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLAE2, DLASCL, DLASRT, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, SIGN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|          CALL XERBLA( 'DSTERF', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
|       IF( N.LE.1 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Determine the unit roundoff for this environment.
 | |
| *
 | |
|       EPS = DLAMCH( 'E' )
 | |
|       EPS2 = EPS**2
 | |
|       SAFMIN = DLAMCH( 'S' )
 | |
|       SAFMAX = ONE / SAFMIN
 | |
|       SSFMAX = SQRT( SAFMAX ) / THREE
 | |
|       SSFMIN = SQRT( SAFMIN ) / EPS2
 | |
|       RMAX = DLAMCH( 'O' )
 | |
| *
 | |
| *     Compute the eigenvalues of the tridiagonal matrix.
 | |
| *
 | |
|       NMAXIT = N*MAXIT
 | |
|       SIGMA = ZERO
 | |
|       JTOT = 0
 | |
| *
 | |
| *     Determine where the matrix splits and choose QL or QR iteration
 | |
| *     for each block, according to whether top or bottom diagonal
 | |
| *     element is smaller.
 | |
| *
 | |
|       L1 = 1
 | |
| *
 | |
|    10 CONTINUE
 | |
|       IF( L1.GT.N )
 | |
|      $   GO TO 170
 | |
|       IF( L1.GT.1 )
 | |
|      $   E( L1-1 ) = ZERO
 | |
|       DO 20 M = L1, N - 1
 | |
|          IF( ABS( E( M ) ).LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+
 | |
|      $       1 ) ) ) )*EPS ) THEN
 | |
|             E( M ) = ZERO
 | |
|             GO TO 30
 | |
|          END IF
 | |
|    20 CONTINUE
 | |
|       M = N
 | |
| *
 | |
|    30 CONTINUE
 | |
|       L = L1
 | |
|       LSV = L
 | |
|       LEND = M
 | |
|       LENDSV = LEND
 | |
|       L1 = M + 1
 | |
|       IF( LEND.EQ.L )
 | |
|      $   GO TO 10
 | |
| *
 | |
| *     Scale submatrix in rows and columns L to LEND
 | |
| *
 | |
|       ANORM = DLANST( 'M', LEND-L+1, D( L ), E( L ) )
 | |
|       ISCALE = 0
 | |
|       IF( ANORM.EQ.ZERO )
 | |
|      $   GO TO 10      
 | |
|       IF( (ANORM.GT.SSFMAX) ) THEN
 | |
|          ISCALE = 1
 | |
|          CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N,
 | |
|      $                INFO )
 | |
|          CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N,
 | |
|      $                INFO )
 | |
|       ELSE IF( ANORM.LT.SSFMIN ) THEN
 | |
|          ISCALE = 2
 | |
|          CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N,
 | |
|      $                INFO )
 | |
|          CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N,
 | |
|      $                INFO )
 | |
|       END IF
 | |
| *
 | |
|       DO 40 I = L, LEND - 1
 | |
|          E( I ) = E( I )**2
 | |
|    40 CONTINUE
 | |
| *
 | |
| *     Choose between QL and QR iteration
 | |
| *
 | |
|       IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
 | |
|          LEND = LSV
 | |
|          L = LENDSV
 | |
|       END IF
 | |
| *
 | |
|       IF( LEND.GE.L ) THEN
 | |
| *
 | |
| *        QL Iteration
 | |
| *
 | |
| *        Look for small subdiagonal element.
 | |
| *
 | |
|    50    CONTINUE
 | |
|          IF( L.NE.LEND ) THEN
 | |
|             DO 60 M = L, LEND - 1
 | |
|                IF( ABS( E( M ) ).LE.EPS2*ABS( D( M )*D( M+1 ) ) )
 | |
|      $            GO TO 70
 | |
|    60       CONTINUE
 | |
|          END IF
 | |
|          M = LEND
 | |
| *
 | |
|    70    CONTINUE
 | |
|          IF( M.LT.LEND )
 | |
|      $      E( M ) = ZERO
 | |
|          P = D( L )
 | |
|          IF( M.EQ.L )
 | |
|      $      GO TO 90
 | |
| *
 | |
| *        If remaining matrix is 2 by 2, use DLAE2 to compute its
 | |
| *        eigenvalues.
 | |
| *
 | |
|          IF( M.EQ.L+1 ) THEN
 | |
|             RTE = SQRT( E( L ) )
 | |
|             CALL DLAE2( D( L ), RTE, D( L+1 ), RT1, RT2 )
 | |
|             D( L ) = RT1
 | |
|             D( L+1 ) = RT2
 | |
|             E( L ) = ZERO
 | |
|             L = L + 2
 | |
|             IF( L.LE.LEND )
 | |
|      $         GO TO 50
 | |
|             GO TO 150
 | |
|          END IF
 | |
| *
 | |
|          IF( JTOT.EQ.NMAXIT )
 | |
|      $      GO TO 150
 | |
|          JTOT = JTOT + 1
 | |
| *
 | |
| *        Form shift.
 | |
| *
 | |
|          RTE = SQRT( E( L ) )
 | |
|          SIGMA = ( D( L+1 )-P ) / ( TWO*RTE )
 | |
|          R = DLAPY2( SIGMA, ONE )
 | |
|          SIGMA = P - ( RTE / ( SIGMA+SIGN( R, SIGMA ) ) )
 | |
| *
 | |
|          C = ONE
 | |
|          S = ZERO
 | |
|          GAMMA = D( M ) - SIGMA
 | |
|          P = GAMMA*GAMMA
 | |
| *
 | |
| *        Inner loop
 | |
| *
 | |
|          DO 80 I = M - 1, L, -1
 | |
|             BB = E( I )
 | |
|             R = P + BB
 | |
|             IF( I.NE.M-1 )
 | |
|      $         E( I+1 ) = S*R
 | |
|             OLDC = C
 | |
|             C = P / R
 | |
|             S = BB / R
 | |
|             OLDGAM = GAMMA
 | |
|             ALPHA = D( I )
 | |
|             GAMMA = C*( ALPHA-SIGMA ) - S*OLDGAM
 | |
|             D( I+1 ) = OLDGAM + ( ALPHA-GAMMA )
 | |
|             IF( C.NE.ZERO ) THEN
 | |
|                P = ( GAMMA*GAMMA ) / C
 | |
|             ELSE
 | |
|                P = OLDC*BB
 | |
|             END IF
 | |
|    80    CONTINUE
 | |
| *
 | |
|          E( L ) = S*P
 | |
|          D( L ) = SIGMA + GAMMA
 | |
|          GO TO 50
 | |
| *
 | |
| *        Eigenvalue found.
 | |
| *
 | |
|    90    CONTINUE
 | |
|          D( L ) = P
 | |
| *
 | |
|          L = L + 1
 | |
|          IF( L.LE.LEND )
 | |
|      $      GO TO 50
 | |
|          GO TO 150
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        QR Iteration
 | |
| *
 | |
| *        Look for small superdiagonal element.
 | |
| *
 | |
|   100    CONTINUE
 | |
|          DO 110 M = L, LEND + 1, -1
 | |
|             IF( ABS( E( M-1 ) ).LE.EPS2*ABS( D( M )*D( M-1 ) ) )
 | |
|      $         GO TO 120
 | |
|   110    CONTINUE
 | |
|          M = LEND
 | |
| *
 | |
|   120    CONTINUE
 | |
|          IF( M.GT.LEND )
 | |
|      $      E( M-1 ) = ZERO
 | |
|          P = D( L )
 | |
|          IF( M.EQ.L )
 | |
|      $      GO TO 140
 | |
| *
 | |
| *        If remaining matrix is 2 by 2, use DLAE2 to compute its
 | |
| *        eigenvalues.
 | |
| *
 | |
|          IF( M.EQ.L-1 ) THEN
 | |
|             RTE = SQRT( E( L-1 ) )
 | |
|             CALL DLAE2( D( L ), RTE, D( L-1 ), RT1, RT2 )
 | |
|             D( L ) = RT1
 | |
|             D( L-1 ) = RT2
 | |
|             E( L-1 ) = ZERO
 | |
|             L = L - 2
 | |
|             IF( L.GE.LEND )
 | |
|      $         GO TO 100
 | |
|             GO TO 150
 | |
|          END IF
 | |
| *
 | |
|          IF( JTOT.EQ.NMAXIT )
 | |
|      $      GO TO 150
 | |
|          JTOT = JTOT + 1
 | |
| *
 | |
| *        Form shift.
 | |
| *
 | |
|          RTE = SQRT( E( L-1 ) )
 | |
|          SIGMA = ( D( L-1 )-P ) / ( TWO*RTE )
 | |
|          R = DLAPY2( SIGMA, ONE )
 | |
|          SIGMA = P - ( RTE / ( SIGMA+SIGN( R, SIGMA ) ) )
 | |
| *
 | |
|          C = ONE
 | |
|          S = ZERO
 | |
|          GAMMA = D( M ) - SIGMA
 | |
|          P = GAMMA*GAMMA
 | |
| *
 | |
| *        Inner loop
 | |
| *
 | |
|          DO 130 I = M, L - 1
 | |
|             BB = E( I )
 | |
|             R = P + BB
 | |
|             IF( I.NE.M )
 | |
|      $         E( I-1 ) = S*R
 | |
|             OLDC = C
 | |
|             C = P / R
 | |
|             S = BB / R
 | |
|             OLDGAM = GAMMA
 | |
|             ALPHA = D( I+1 )
 | |
|             GAMMA = C*( ALPHA-SIGMA ) - S*OLDGAM
 | |
|             D( I ) = OLDGAM + ( ALPHA-GAMMA )
 | |
|             IF( C.NE.ZERO ) THEN
 | |
|                P = ( GAMMA*GAMMA ) / C
 | |
|             ELSE
 | |
|                P = OLDC*BB
 | |
|             END IF
 | |
|   130    CONTINUE
 | |
| *
 | |
|          E( L-1 ) = S*P
 | |
|          D( L ) = SIGMA + GAMMA
 | |
|          GO TO 100
 | |
| *
 | |
| *        Eigenvalue found.
 | |
| *
 | |
|   140    CONTINUE
 | |
|          D( L ) = P
 | |
| *
 | |
|          L = L - 1
 | |
|          IF( L.GE.LEND )
 | |
|      $      GO TO 100
 | |
|          GO TO 150
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Undo scaling if necessary
 | |
| *
 | |
|   150 CONTINUE
 | |
|       IF( ISCALE.EQ.1 )
 | |
|      $   CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1,
 | |
|      $                D( LSV ), N, INFO )
 | |
|       IF( ISCALE.EQ.2 )
 | |
|      $   CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1,
 | |
|      $                D( LSV ), N, INFO )
 | |
| *
 | |
| *     Check for no convergence to an eigenvalue after a total
 | |
| *     of N*MAXIT iterations.
 | |
| *
 | |
|       IF( JTOT.LT.NMAXIT )
 | |
|      $   GO TO 10
 | |
|       DO 160 I = 1, N - 1
 | |
|          IF( E( I ).NE.ZERO )
 | |
|      $      INFO = INFO + 1
 | |
|   160 CONTINUE
 | |
|       GO TO 180
 | |
| *
 | |
| *     Sort eigenvalues in increasing order.
 | |
| *
 | |
|   170 CONTINUE
 | |
|       CALL DLASRT( 'I', N, D, INFO )
 | |
| *
 | |
|   180 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of DSTERF
 | |
| *
 | |
|       END
 |