361 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			361 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZLANTB + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlantb.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlantb.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlantb.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       DOUBLE PRECISION FUNCTION ZLANTB( NORM, UPLO, DIAG, N, K, AB,
 | 
						|
*                        LDAB, WORK )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          DIAG, NORM, UPLO
 | 
						|
*       INTEGER            K, LDAB, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   WORK( * )
 | 
						|
*       COMPLEX*16         AB( LDAB, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZLANTB  returns the value of the one norm,  or the Frobenius norm, or
 | 
						|
*> the  infinity norm,  or the element of  largest absolute value  of an
 | 
						|
*> n by n triangular band matrix A,  with ( k + 1 ) diagonals.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \return ZLANTB
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>    ZLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 | 
						|
*>             (
 | 
						|
*>             ( norm1(A),         NORM = '1', 'O' or 'o'
 | 
						|
*>             (
 | 
						|
*>             ( normI(A),         NORM = 'I' or 'i'
 | 
						|
*>             (
 | 
						|
*>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 | 
						|
*>
 | 
						|
*> where  norm1  denotes the  one norm of a matrix (maximum column sum),
 | 
						|
*> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 | 
						|
*> normF  denotes the  Frobenius norm of a matrix (square root of sum of
 | 
						|
*> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] NORM
 | 
						|
*> \verbatim
 | 
						|
*>          NORM is CHARACTER*1
 | 
						|
*>          Specifies the value to be returned in ZLANTB as described
 | 
						|
*>          above.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the matrix A is upper or lower triangular.
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIAG
 | 
						|
*> \verbatim
 | 
						|
*>          DIAG is CHARACTER*1
 | 
						|
*>          Specifies whether or not the matrix A is unit triangular.
 | 
						|
*>          = 'N':  Non-unit triangular
 | 
						|
*>          = 'U':  Unit triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.  When N = 0, ZLANTB is
 | 
						|
*>          set to zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>          The number of super-diagonals of the matrix A if UPLO = 'U',
 | 
						|
*>          or the number of sub-diagonals of the matrix A if UPLO = 'L'.
 | 
						|
*>          K >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AB
 | 
						|
*> \verbatim
 | 
						|
*>          AB is COMPLEX*16 array, dimension (LDAB,N)
 | 
						|
*>          The upper or lower triangular band matrix A, stored in the
 | 
						|
*>          first k+1 rows of AB.  The j-th column of A is stored
 | 
						|
*>          in the j-th column of the array AB as follows:
 | 
						|
*>          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
 | 
						|
*>          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
 | 
						|
*>          Note that when DIAG = 'U', the elements of the array AB
 | 
						|
*>          corresponding to the diagonal elements of the matrix A are
 | 
						|
*>          not referenced, but are assumed to be one.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAB
 | 
						|
*> \verbatim
 | 
						|
*>          LDAB is INTEGER
 | 
						|
*>          The leading dimension of the array AB.  LDAB >= K+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 | 
						|
*>          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
 | 
						|
*>          referenced.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16OTHERauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      DOUBLE PRECISION FUNCTION ZLANTB( NORM, UPLO, DIAG, N, K, AB,
 | 
						|
     $                 LDAB, WORK )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          DIAG, NORM, UPLO
 | 
						|
      INTEGER            K, LDAB, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   WORK( * )
 | 
						|
      COMPLEX*16         AB( LDAB, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UDIAG
 | 
						|
      INTEGER            I, J, L
 | 
						|
      DOUBLE PRECISION   SCALE, SUM, VALUE
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME, DISNAN
 | 
						|
      EXTERNAL           LSAME, DISNAN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZLASSQ
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         VALUE = ZERO
 | 
						|
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
 | 
						|
*
 | 
						|
*        Find max(abs(A(i,j))).
 | 
						|
*
 | 
						|
         IF( LSAME( DIAG, 'U' ) ) THEN
 | 
						|
            VALUE = ONE
 | 
						|
            IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
               DO 20 J = 1, N
 | 
						|
                  DO 10 I = MAX( K+2-J, 1 ), K
 | 
						|
                     SUM = ABS( AB( I, J ) )
 | 
						|
                     IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | 
						|
   10             CONTINUE
 | 
						|
   20          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 40 J = 1, N
 | 
						|
                  DO 30 I = 2, MIN( N+1-J, K+1 )
 | 
						|
                     SUM = ABS( AB( I, J ) )
 | 
						|
                     IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | 
						|
   30             CONTINUE
 | 
						|
   40          CONTINUE
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            VALUE = ZERO
 | 
						|
            IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
               DO 60 J = 1, N
 | 
						|
                  DO 50 I = MAX( K+2-J, 1 ), K + 1
 | 
						|
                     SUM = ABS( AB( I, J ) )
 | 
						|
                     IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | 
						|
   50             CONTINUE
 | 
						|
   60          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 80 J = 1, N
 | 
						|
                  DO 70 I = 1, MIN( N+1-J, K+1 )
 | 
						|
                     SUM = ABS( AB( I, J ) )
 | 
						|
                     IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | 
						|
   70             CONTINUE
 | 
						|
   80          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
 | 
						|
*
 | 
						|
*        Find norm1(A).
 | 
						|
*
 | 
						|
         VALUE = ZERO
 | 
						|
         UDIAG = LSAME( DIAG, 'U' )
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
            DO 110 J = 1, N
 | 
						|
               IF( UDIAG ) THEN
 | 
						|
                  SUM = ONE
 | 
						|
                  DO 90 I = MAX( K+2-J, 1 ), K
 | 
						|
                     SUM = SUM + ABS( AB( I, J ) )
 | 
						|
   90             CONTINUE
 | 
						|
               ELSE
 | 
						|
                  SUM = ZERO
 | 
						|
                  DO 100 I = MAX( K+2-J, 1 ), K + 1
 | 
						|
                     SUM = SUM + ABS( AB( I, J ) )
 | 
						|
  100             CONTINUE
 | 
						|
               END IF
 | 
						|
               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | 
						|
  110       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 140 J = 1, N
 | 
						|
               IF( UDIAG ) THEN
 | 
						|
                  SUM = ONE
 | 
						|
                  DO 120 I = 2, MIN( N+1-J, K+1 )
 | 
						|
                     SUM = SUM + ABS( AB( I, J ) )
 | 
						|
  120             CONTINUE
 | 
						|
               ELSE
 | 
						|
                  SUM = ZERO
 | 
						|
                  DO 130 I = 1, MIN( N+1-J, K+1 )
 | 
						|
                     SUM = SUM + ABS( AB( I, J ) )
 | 
						|
  130             CONTINUE
 | 
						|
               END IF
 | 
						|
               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | 
						|
  140       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE IF( LSAME( NORM, 'I' ) ) THEN
 | 
						|
*
 | 
						|
*        Find normI(A).
 | 
						|
*
 | 
						|
         VALUE = ZERO
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
            IF( LSAME( DIAG, 'U' ) ) THEN
 | 
						|
               DO 150 I = 1, N
 | 
						|
                  WORK( I ) = ONE
 | 
						|
  150          CONTINUE
 | 
						|
               DO 170 J = 1, N
 | 
						|
                  L = K + 1 - J
 | 
						|
                  DO 160 I = MAX( 1, J-K ), J - 1
 | 
						|
                     WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
 | 
						|
  160             CONTINUE
 | 
						|
  170          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 180 I = 1, N
 | 
						|
                  WORK( I ) = ZERO
 | 
						|
  180          CONTINUE
 | 
						|
               DO 200 J = 1, N
 | 
						|
                  L = K + 1 - J
 | 
						|
                  DO 190 I = MAX( 1, J-K ), J
 | 
						|
                     WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
 | 
						|
  190             CONTINUE
 | 
						|
  200          CONTINUE
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            IF( LSAME( DIAG, 'U' ) ) THEN
 | 
						|
               DO 210 I = 1, N
 | 
						|
                  WORK( I ) = ONE
 | 
						|
  210          CONTINUE
 | 
						|
               DO 230 J = 1, N
 | 
						|
                  L = 1 - J
 | 
						|
                  DO 220 I = J + 1, MIN( N, J+K )
 | 
						|
                     WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
 | 
						|
  220             CONTINUE
 | 
						|
  230          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 240 I = 1, N
 | 
						|
                  WORK( I ) = ZERO
 | 
						|
  240          CONTINUE
 | 
						|
               DO 260 J = 1, N
 | 
						|
                  L = 1 - J
 | 
						|
                  DO 250 I = J, MIN( N, J+K )
 | 
						|
                     WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
 | 
						|
  250             CONTINUE
 | 
						|
  260          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         DO 270 I = 1, N
 | 
						|
            SUM = WORK( I )
 | 
						|
            IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | 
						|
  270    CONTINUE
 | 
						|
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
 | 
						|
*
 | 
						|
*        Find normF(A).
 | 
						|
*
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
            IF( LSAME( DIAG, 'U' ) ) THEN
 | 
						|
               SCALE = ONE
 | 
						|
               SUM = N
 | 
						|
               IF( K.GT.0 ) THEN
 | 
						|
                  DO 280 J = 2, N
 | 
						|
                     CALL ZLASSQ( MIN( J-1, K ),
 | 
						|
     $                            AB( MAX( K+2-J, 1 ), J ), 1, SCALE,
 | 
						|
     $                            SUM )
 | 
						|
  280             CONTINUE
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
               SCALE = ZERO
 | 
						|
               SUM = ONE
 | 
						|
               DO 290 J = 1, N
 | 
						|
                  CALL ZLASSQ( MIN( J, K+1 ), AB( MAX( K+2-J, 1 ), J ),
 | 
						|
     $                         1, SCALE, SUM )
 | 
						|
  290          CONTINUE
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            IF( LSAME( DIAG, 'U' ) ) THEN
 | 
						|
               SCALE = ONE
 | 
						|
               SUM = N
 | 
						|
               IF( K.GT.0 ) THEN
 | 
						|
                  DO 300 J = 1, N - 1
 | 
						|
                     CALL ZLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE,
 | 
						|
     $                            SUM )
 | 
						|
  300             CONTINUE
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
               SCALE = ZERO
 | 
						|
               SUM = ONE
 | 
						|
               DO 310 J = 1, N
 | 
						|
                  CALL ZLASSQ( MIN( N-J+1, K+1 ), AB( 1, J ), 1, SCALE,
 | 
						|
     $                         SUM )
 | 
						|
  310          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         VALUE = SCALE*SQRT( SUM )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      ZLANTB = VALUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZLANTB
 | 
						|
*
 | 
						|
      END
 |