506 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			506 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
static real c_b5 = 1.f;
 | 
						|
 | 
						|
/* > \brief \b SLATZM */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download SLATZM + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slatzm.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slatzm.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slatzm.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE SLATZM( SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK ) */
 | 
						|
 | 
						|
/*       CHARACTER          SIDE */
 | 
						|
/*       INTEGER            INCV, LDC, M, N */
 | 
						|
/*       REAL               TAU */
 | 
						|
/*       REAL               C1( LDC, * ), C2( LDC, * ), V( * ), WORK( * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > This routine is deprecated and has been replaced by routine SORMRZ. */
 | 
						|
/* > */
 | 
						|
/* > SLATZM applies a Householder matrix generated by STZRQF to a matrix. */
 | 
						|
/* > */
 | 
						|
/* > Let P = I - tau*u*u**T,   u = ( 1 ), */
 | 
						|
/* >                               ( v ) */
 | 
						|
/* > where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if */
 | 
						|
/* > SIDE = 'R'. */
 | 
						|
/* > */
 | 
						|
/* > If SIDE equals 'L', let */
 | 
						|
/* >        C = [ C1 ] 1 */
 | 
						|
/* >            [ C2 ] m-1 */
 | 
						|
/* >              n */
 | 
						|
/* > Then C is overwritten by P*C. */
 | 
						|
/* > */
 | 
						|
/* > If SIDE equals 'R', let */
 | 
						|
/* >        C = [ C1, C2 ] m */
 | 
						|
/* >               1  n-1 */
 | 
						|
/* > Then C is overwritten by C*P. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] SIDE */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          SIDE is CHARACTER*1 */
 | 
						|
/* >          = 'L': form P * C */
 | 
						|
/* >          = 'R': form C * P */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] M */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          M is INTEGER */
 | 
						|
/* >          The number of rows of the matrix C. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The number of columns of the matrix C. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] V */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          V is REAL array, dimension */
 | 
						|
/* >                  (1 + (M-1)*abs(INCV)) if SIDE = 'L' */
 | 
						|
/* >                  (1 + (N-1)*abs(INCV)) if SIDE = 'R' */
 | 
						|
/* >          The vector v in the representation of P. V is not used */
 | 
						|
/* >          if TAU = 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] INCV */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INCV is INTEGER */
 | 
						|
/* >          The increment between elements of v. INCV <> 0 */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] TAU */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          TAU is REAL */
 | 
						|
/* >          The value tau in the representation of P. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] C1 */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          C1 is REAL array, dimension */
 | 
						|
/* >                         (LDC,N) if SIDE = 'L' */
 | 
						|
/* >                         (M,1)   if SIDE = 'R' */
 | 
						|
/* >          On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1 */
 | 
						|
/* >          if SIDE = 'R'. */
 | 
						|
/* > */
 | 
						|
/* >          On exit, the first row of P*C if SIDE = 'L', or the first */
 | 
						|
/* >          column of C*P if SIDE = 'R'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] C2 */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          C2 is REAL array, dimension */
 | 
						|
/* >                         (LDC, N)   if SIDE = 'L' */
 | 
						|
/* >                         (LDC, N-1) if SIDE = 'R' */
 | 
						|
/* >          On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the */
 | 
						|
/* >          m x (n - 1) matrix C2 if SIDE = 'R'. */
 | 
						|
/* > */
 | 
						|
/* >          On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P */
 | 
						|
/* >          if SIDE = 'R'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDC */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDC is INTEGER */
 | 
						|
/* >          The leading dimension of the arrays C1 and C2. LDC >= (1,M). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is REAL array, dimension */
 | 
						|
/* >                      (N) if SIDE = 'L' */
 | 
						|
/* >                      (M) if SIDE = 'R' */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup realOTHERcomputational */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void slatzm_(char *side, integer *m, integer *n, real *v, 
 | 
						|
	integer *incv, real *tau, real *c1, real *c2, integer *ldc, real *
 | 
						|
	work)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer c1_dim1, c1_offset, c2_dim1, c2_offset, i__1;
 | 
						|
    real r__1;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    extern /* Subroutine */ void sger_(integer *, integer *, real *, real *, 
 | 
						|
	    integer *, real *, integer *, real *, integer *);
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    extern /* Subroutine */ void sgemv_(char *, integer *, integer *, real *, 
 | 
						|
	    real *, integer *, real *, integer *, real *, real *, integer *), scopy_(integer *, real *, integer *, real *, integer *), 
 | 
						|
	    saxpy_(integer *, real *, real *, integer *, real *, integer *);
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --v;
 | 
						|
    c2_dim1 = *ldc;
 | 
						|
    c2_offset = 1 + c2_dim1 * 1;
 | 
						|
    c2 -= c2_offset;
 | 
						|
    c1_dim1 = *ldc;
 | 
						|
    c1_offset = 1 + c1_dim1 * 1;
 | 
						|
    c1 -= c1_offset;
 | 
						|
    --work;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    if (f2cmin(*m,*n) == 0 || *tau == 0.f) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (lsame_(side, "L")) {
 | 
						|
 | 
						|
/*        w :=  (C1 + v**T * C2)**T */
 | 
						|
 | 
						|
	scopy_(n, &c1[c1_offset], ldc, &work[1], &c__1);
 | 
						|
	i__1 = *m - 1;
 | 
						|
	sgemv_("Transpose", &i__1, n, &c_b5, &c2[c2_offset], ldc, &v[1], incv,
 | 
						|
		 &c_b5, &work[1], &c__1);
 | 
						|
 | 
						|
/*        [ C1 ] := [ C1 ] - tau* [ 1 ] * w**T */
 | 
						|
/*        [ C2 ]    [ C2 ]        [ v ] */
 | 
						|
 | 
						|
	r__1 = -(*tau);
 | 
						|
	saxpy_(n, &r__1, &work[1], &c__1, &c1[c1_offset], ldc);
 | 
						|
	i__1 = *m - 1;
 | 
						|
	r__1 = -(*tau);
 | 
						|
	sger_(&i__1, n, &r__1, &v[1], incv, &work[1], &c__1, &c2[c2_offset], 
 | 
						|
		ldc);
 | 
						|
 | 
						|
    } else if (lsame_(side, "R")) {
 | 
						|
 | 
						|
/*        w := C1 + C2 * v */
 | 
						|
 | 
						|
	scopy_(m, &c1[c1_offset], &c__1, &work[1], &c__1);
 | 
						|
	i__1 = *n - 1;
 | 
						|
	sgemv_("No transpose", m, &i__1, &c_b5, &c2[c2_offset], ldc, &v[1], 
 | 
						|
		incv, &c_b5, &work[1], &c__1);
 | 
						|
 | 
						|
/*        [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v**T] */
 | 
						|
 | 
						|
	r__1 = -(*tau);
 | 
						|
	saxpy_(m, &r__1, &work[1], &c__1, &c1[c1_offset], &c__1);
 | 
						|
	i__1 = *n - 1;
 | 
						|
	r__1 = -(*tau);
 | 
						|
	sger_(m, &i__1, &r__1, &work[1], &c__1, &v[1], incv, &c2[c2_offset], 
 | 
						|
		ldc);
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of SLATZM */
 | 
						|
 | 
						|
} /* slatzm_ */
 | 
						|
 |