559 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			559 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> ZGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZGGEV + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggev.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggev.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggev.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
 | |
| *                         VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBVL, JOBVR
 | |
| *       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   RWORK( * )
 | |
| *       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
 | |
| *      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
 | |
| *      $                   WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZGGEV computes for a pair of N-by-N complex nonsymmetric matrices
 | |
| *> (A,B), the generalized eigenvalues, and optionally, the left and/or
 | |
| *> right generalized eigenvectors.
 | |
| *>
 | |
| *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
 | |
| *> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
 | |
| *> singular. It is usually represented as the pair (alpha,beta), as
 | |
| *> there is a reasonable interpretation for beta=0, and even for both
 | |
| *> being zero.
 | |
| *>
 | |
| *> The right generalized eigenvector v(j) corresponding to the
 | |
| *> generalized eigenvalue lambda(j) of (A,B) satisfies
 | |
| *>
 | |
| *>              A * v(j) = lambda(j) * B * v(j).
 | |
| *>
 | |
| *> The left generalized eigenvector u(j) corresponding to the
 | |
| *> generalized eigenvalues lambda(j) of (A,B) satisfies
 | |
| *>
 | |
| *>              u(j)**H * A = lambda(j) * u(j)**H * B
 | |
| *>
 | |
| *> where u(j)**H is the conjugate-transpose of u(j).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBVL
 | |
| *> \verbatim
 | |
| *>          JOBVL is CHARACTER*1
 | |
| *>          = 'N':  do not compute the left generalized eigenvectors;
 | |
| *>          = 'V':  compute the left generalized eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBVR
 | |
| *> \verbatim
 | |
| *>          JOBVR is CHARACTER*1
 | |
| *>          = 'N':  do not compute the right generalized eigenvectors;
 | |
| *>          = 'V':  compute the right generalized eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A, B, VL, and VR.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA, N)
 | |
| *>          On entry, the matrix A in the pair (A,B).
 | |
| *>          On exit, A has been overwritten.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX*16 array, dimension (LDB, N)
 | |
| *>          On entry, the matrix B in the pair (A,B).
 | |
| *>          On exit, B has been overwritten.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is COMPLEX*16 array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is COMPLEX*16 array, dimension (N)
 | |
| *>          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
 | |
| *>          generalized eigenvalues.
 | |
| *>
 | |
| *>          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
 | |
| *>          underflow, and BETA(j) may even be zero.  Thus, the user
 | |
| *>          should avoid naively computing the ratio alpha/beta.
 | |
| *>          However, ALPHA will be always less than and usually
 | |
| *>          comparable with norm(A) in magnitude, and BETA always less
 | |
| *>          than and usually comparable with norm(B).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VL
 | |
| *> \verbatim
 | |
| *>          VL is COMPLEX*16 array, dimension (LDVL,N)
 | |
| *>          If JOBVL = 'V', the left generalized eigenvectors u(j) are
 | |
| *>          stored one after another in the columns of VL, in the same
 | |
| *>          order as their eigenvalues.
 | |
| *>          Each eigenvector is scaled so the largest component has
 | |
| *>          abs(real part) + abs(imag. part) = 1.
 | |
| *>          Not referenced if JOBVL = 'N'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVL
 | |
| *> \verbatim
 | |
| *>          LDVL is INTEGER
 | |
| *>          The leading dimension of the matrix VL. LDVL >= 1, and
 | |
| *>          if JOBVL = 'V', LDVL >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VR
 | |
| *> \verbatim
 | |
| *>          VR is COMPLEX*16 array, dimension (LDVR,N)
 | |
| *>          If JOBVR = 'V', the right generalized eigenvectors v(j) are
 | |
| *>          stored one after another in the columns of VR, in the same
 | |
| *>          order as their eigenvalues.
 | |
| *>          Each eigenvector is scaled so the largest component has
 | |
| *>          abs(real part) + abs(imag. part) = 1.
 | |
| *>          Not referenced if JOBVR = 'N'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVR
 | |
| *> \verbatim
 | |
| *>          LDVR is INTEGER
 | |
| *>          The leading dimension of the matrix VR. LDVR >= 1, and
 | |
| *>          if JOBVR = 'V', LDVR >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.  LWORK >= max(1,2*N).
 | |
| *>          For good performance, LWORK must generally be larger.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (8*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          =1,...,N:
 | |
| *>                The QZ iteration failed.  No eigenvectors have been
 | |
| *>                calculated, but ALPHA(j) and BETA(j) should be
 | |
| *>                correct for j=INFO+1,...,N.
 | |
| *>          > N:  =N+1: other then QZ iteration failed in DHGEQZ,
 | |
| *>                =N+2: error return from DTGEVC.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date April 2012
 | |
| *
 | |
| *> \ingroup complex16GEeigen
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
 | |
|      $                  VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.4.1) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     April 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBVL, JOBVR
 | |
|       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   RWORK( * )
 | |
|       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
 | |
|      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
 | |
|      $                   WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | |
|       COMPLEX*16         CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
 | |
|      $                   CONE = ( 1.0D0, 0.0D0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
 | |
|       CHARACTER          CHTEMP
 | |
|       INTEGER            ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
 | |
|      $                   IN, IRIGHT, IROWS, IRWRK, ITAU, IWRK, JC, JR,
 | |
|      $                   LWKMIN, LWKOPT
 | |
|       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
 | |
|      $                   SMLNUM, TEMP
 | |
|       COMPLEX*16         X
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       LOGICAL            LDUMMA( 1 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD,
 | |
|      $                   ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGEVC, ZUNGQR,
 | |
|      $                   ZUNMQR
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       DOUBLE PRECISION   DLAMCH, ZLANGE
 | |
|       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       DOUBLE PRECISION   ABS1
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode the input arguments
 | |
| *
 | |
|       IF( LSAME( JOBVL, 'N' ) ) THEN
 | |
|          IJOBVL = 1
 | |
|          ILVL = .FALSE.
 | |
|       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
 | |
|          IJOBVL = 2
 | |
|          ILVL = .TRUE.
 | |
|       ELSE
 | |
|          IJOBVL = -1
 | |
|          ILVL = .FALSE.
 | |
|       END IF
 | |
| *
 | |
|       IF( LSAME( JOBVR, 'N' ) ) THEN
 | |
|          IJOBVR = 1
 | |
|          ILVR = .FALSE.
 | |
|       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
 | |
|          IJOBVR = 2
 | |
|          ILVR = .TRUE.
 | |
|       ELSE
 | |
|          IJOBVR = -1
 | |
|          ILVR = .FALSE.
 | |
|       END IF
 | |
|       ILV = ILVL .OR. ILVR
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( IJOBVL.LE.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( IJOBVR.LE.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
 | |
|          INFO = -11
 | |
|       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
 | |
|          INFO = -13
 | |
|       END IF
 | |
| *
 | |
| *     Compute workspace
 | |
| *      (Note: Comments in the code beginning "Workspace:" describe the
 | |
| *       minimal amount of workspace needed at that point in the code,
 | |
| *       as well as the preferred amount for good performance.
 | |
| *       NB refers to the optimal block size for the immediately
 | |
| *       following subroutine, as returned by ILAENV. The workspace is
 | |
| *       computed assuming ILO = 1 and IHI = N, the worst case.)
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          LWKMIN = MAX( 1, 2*N )
 | |
|          LWKOPT = MAX( 1, N + N*ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
 | |
|          LWKOPT = MAX( LWKOPT, N +
 | |
|      $                 N*ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, 0 ) )
 | |
|          IF( ILVL ) THEN
 | |
|             LWKOPT = MAX( LWKOPT, N +
 | |
|      $                    N*ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, -1 ) )
 | |
|          END IF
 | |
|          WORK( 1 ) = LWKOPT
 | |
| *
 | |
|          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
 | |
|      $      INFO = -15
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZGGEV ', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Get machine constants
 | |
| *
 | |
|       EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
 | |
|       SMLNUM = DLAMCH( 'S' )
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL DLABAD( SMLNUM, BIGNUM )
 | |
|       SMLNUM = SQRT( SMLNUM ) / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
| *
 | |
| *     Scale A if max element outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
 | |
|       ILASCL = .FALSE.
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | |
|          ANRMTO = SMLNUM
 | |
|          ILASCL = .TRUE.
 | |
|       ELSE IF( ANRM.GT.BIGNUM ) THEN
 | |
|          ANRMTO = BIGNUM
 | |
|          ILASCL = .TRUE.
 | |
|       END IF
 | |
|       IF( ILASCL )
 | |
|      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
 | |
| *
 | |
| *     Scale B if max element outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
 | |
|       ILBSCL = .FALSE.
 | |
|       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | |
|          BNRMTO = SMLNUM
 | |
|          ILBSCL = .TRUE.
 | |
|       ELSE IF( BNRM.GT.BIGNUM ) THEN
 | |
|          BNRMTO = BIGNUM
 | |
|          ILBSCL = .TRUE.
 | |
|       END IF
 | |
|       IF( ILBSCL )
 | |
|      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
 | |
| *
 | |
| *     Permute the matrices A, B to isolate eigenvalues if possible
 | |
| *     (Real Workspace: need 6*N)
 | |
| *
 | |
|       ILEFT = 1
 | |
|       IRIGHT = N + 1
 | |
|       IRWRK = IRIGHT + N
 | |
|       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
 | |
|      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
 | |
| *
 | |
| *     Reduce B to triangular form (QR decomposition of B)
 | |
| *     (Complex Workspace: need N, prefer N*NB)
 | |
| *
 | |
|       IROWS = IHI + 1 - ILO
 | |
|       IF( ILV ) THEN
 | |
|          ICOLS = N + 1 - ILO
 | |
|       ELSE
 | |
|          ICOLS = IROWS
 | |
|       END IF
 | |
|       ITAU = 1
 | |
|       IWRK = ITAU + IROWS
 | |
|       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
 | |
|      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
 | |
| *
 | |
| *     Apply the orthogonal transformation to matrix A
 | |
| *     (Complex Workspace: need N, prefer N*NB)
 | |
| *
 | |
|       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
 | |
|      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
 | |
|      $             LWORK+1-IWRK, IERR )
 | |
| *
 | |
| *     Initialize VL
 | |
| *     (Complex Workspace: need N, prefer N*NB)
 | |
| *
 | |
|       IF( ILVL ) THEN
 | |
|          CALL ZLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
 | |
|          IF( IROWS.GT.1 ) THEN
 | |
|             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
 | |
|      $                   VL( ILO+1, ILO ), LDVL )
 | |
|          END IF
 | |
|          CALL ZUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
 | |
|      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
 | |
|       END IF
 | |
| *
 | |
| *     Initialize VR
 | |
| *
 | |
|       IF( ILVR )
 | |
|      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
 | |
| *
 | |
| *     Reduce to generalized Hessenberg form
 | |
| *
 | |
|       IF( ILV ) THEN
 | |
| *
 | |
| *        Eigenvectors requested -- work on whole matrix.
 | |
| *
 | |
|          CALL ZGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
 | |
|      $                LDVL, VR, LDVR, IERR )
 | |
|       ELSE
 | |
|          CALL ZGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
 | |
|      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
 | |
|       END IF
 | |
| *
 | |
| *     Perform QZ algorithm (Compute eigenvalues, and optionally, the
 | |
| *     Schur form and Schur vectors)
 | |
| *     (Complex Workspace: need N)
 | |
| *     (Real Workspace: need N)
 | |
| *
 | |
|       IWRK = ITAU
 | |
|       IF( ILV ) THEN
 | |
|          CHTEMP = 'S'
 | |
|       ELSE
 | |
|          CHTEMP = 'E'
 | |
|       END IF
 | |
|       CALL ZHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
 | |
|      $             ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWRK ),
 | |
|      $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
 | |
|       IF( IERR.NE.0 ) THEN
 | |
|          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
 | |
|             INFO = IERR
 | |
|          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
 | |
|             INFO = IERR - N
 | |
|          ELSE
 | |
|             INFO = N + 1
 | |
|          END IF
 | |
|          GO TO 70
 | |
|       END IF
 | |
| *
 | |
| *     Compute Eigenvectors
 | |
| *     (Real Workspace: need 2*N)
 | |
| *     (Complex Workspace: need 2*N)
 | |
| *
 | |
|       IF( ILV ) THEN
 | |
|          IF( ILVL ) THEN
 | |
|             IF( ILVR ) THEN
 | |
|                CHTEMP = 'B'
 | |
|             ELSE
 | |
|                CHTEMP = 'L'
 | |
|             END IF
 | |
|          ELSE
 | |
|             CHTEMP = 'R'
 | |
|          END IF
 | |
| *
 | |
|          CALL ZTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
 | |
|      $                VR, LDVR, N, IN, WORK( IWRK ), RWORK( IRWRK ),
 | |
|      $                IERR )
 | |
|          IF( IERR.NE.0 ) THEN
 | |
|             INFO = N + 2
 | |
|             GO TO 70
 | |
|          END IF
 | |
| *
 | |
| *        Undo balancing on VL and VR and normalization
 | |
| *        (Workspace: none needed)
 | |
| *
 | |
|          IF( ILVL ) THEN
 | |
|             CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
 | |
|      $                   RWORK( IRIGHT ), N, VL, LDVL, IERR )
 | |
|             DO 30 JC = 1, N
 | |
|                TEMP = ZERO
 | |
|                DO 10 JR = 1, N
 | |
|                   TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
 | |
|    10          CONTINUE
 | |
|                IF( TEMP.LT.SMLNUM )
 | |
|      $            GO TO 30
 | |
|                TEMP = ONE / TEMP
 | |
|                DO 20 JR = 1, N
 | |
|                   VL( JR, JC ) = VL( JR, JC )*TEMP
 | |
|    20          CONTINUE
 | |
|    30       CONTINUE
 | |
|          END IF
 | |
|          IF( ILVR ) THEN
 | |
|             CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
 | |
|      $                   RWORK( IRIGHT ), N, VR, LDVR, IERR )
 | |
|             DO 60 JC = 1, N
 | |
|                TEMP = ZERO
 | |
|                DO 40 JR = 1, N
 | |
|                   TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
 | |
|    40          CONTINUE
 | |
|                IF( TEMP.LT.SMLNUM )
 | |
|      $            GO TO 60
 | |
|                TEMP = ONE / TEMP
 | |
|                DO 50 JR = 1, N
 | |
|                   VR( JR, JC ) = VR( JR, JC )*TEMP
 | |
|    50          CONTINUE
 | |
|    60       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Undo scaling if necessary
 | |
| *
 | |
|    70 CONTINUE
 | |
| *
 | |
|       IF( ILASCL )
 | |
|      $   CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
 | |
| *
 | |
|       IF( ILBSCL )
 | |
|      $   CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
 | |
| *
 | |
|       WORK( 1 ) = LWKOPT
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZGGEV
 | |
| *
 | |
|       END
 |