784 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			784 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DGSVJ1 pre-processor for the routine sgesvj, applies Jacobi rotations targeting only particular pivots.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGSVJ1 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgsvj1.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgsvj1.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgsvj1.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV,
 | |
| *                          EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       DOUBLE PRECISION   EPS, SFMIN, TOL
 | |
| *       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, N1, NSWEEP
 | |
| *       CHARACTER*1        JOBV
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( LDA, * ), D( N ), SVA( N ), V( LDV, * ),
 | |
| *      $                   WORK( LWORK )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGSVJ1 is called from SGESVJ as a pre-processor and that is its main
 | |
| *> purpose. It applies Jacobi rotations in the same way as SGESVJ does, but
 | |
| *> it targets only particular pivots and it does not check convergence
 | |
| *> (stopping criterion). Few tunning parameters (marked by [TP]) are
 | |
| *> available for the implementer.
 | |
| *>
 | |
| *> Further Details
 | |
| *> ~~~~~~~~~~~~~~~
 | |
| *> DGSVJ1 applies few sweeps of Jacobi rotations in the column space of
 | |
| *> the input M-by-N matrix A. The pivot pairs are taken from the (1,2)
 | |
| *> off-diagonal block in the corresponding N-by-N Gram matrix A^T * A. The
 | |
| *> block-entries (tiles) of the (1,2) off-diagonal block are marked by the
 | |
| *> [x]'s in the following scheme:
 | |
| *>
 | |
| *>    | *  *  * [x] [x] [x]|
 | |
| *>    | *  *  * [x] [x] [x]|    Row-cycling in the nblr-by-nblc [x] blocks.
 | |
| *>    | *  *  * [x] [x] [x]|    Row-cyclic pivoting inside each [x] block.
 | |
| *>    |[x] [x] [x] *  *  * |
 | |
| *>    |[x] [x] [x] *  *  * |
 | |
| *>    |[x] [x] [x] *  *  * |
 | |
| *>
 | |
| *> In terms of the columns of A, the first N1 columns are rotated 'against'
 | |
| *> the remaining N-N1 columns, trying to increase the angle between the
 | |
| *> corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is
 | |
| *> tiled using quadratic tiles of side KBL. Here, KBL is a tunning parmeter.
 | |
| *> The number of sweeps is given in NSWEEP and the orthogonality threshold
 | |
| *> is given in TOL.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBV
 | |
| *> \verbatim
 | |
| *>          JOBV is CHARACTER*1
 | |
| *>          Specifies whether the output from this procedure is used
 | |
| *>          to compute the matrix V:
 | |
| *>          = 'V': the product of the Jacobi rotations is accumulated
 | |
| *>                 by postmulyiplying the N-by-N array V.
 | |
| *>                (See the description of V.)
 | |
| *>          = 'A': the product of the Jacobi rotations is accumulated
 | |
| *>                 by postmulyiplying the MV-by-N array V.
 | |
| *>                (See the descriptions of MV and V.)
 | |
| *>          = 'N': the Jacobi rotations are not accumulated.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the input matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the input matrix A.
 | |
| *>          M >= N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N1
 | |
| *> \verbatim
 | |
| *>          N1 is INTEGER
 | |
| *>          N1 specifies the 2 x 2 block partition, the first N1 columns are
 | |
| *>          rotated 'against' the remaining N-N1 columns of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          On entry, M-by-N matrix A, such that A*diag(D) represents
 | |
| *>          the input matrix.
 | |
| *>          On exit,
 | |
| *>          A_onexit * D_onexit represents the input matrix A*diag(D)
 | |
| *>          post-multiplied by a sequence of Jacobi rotations, where the
 | |
| *>          rotation threshold and the total number of sweeps are given in
 | |
| *>          TOL and NSWEEP, respectively.
 | |
| *>          (See the descriptions of N1, D, TOL and NSWEEP.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The array D accumulates the scaling factors from the fast scaled
 | |
| *>          Jacobi rotations.
 | |
| *>          On entry, A*diag(D) represents the input matrix.
 | |
| *>          On exit, A_onexit*diag(D_onexit) represents the input matrix
 | |
| *>          post-multiplied by a sequence of Jacobi rotations, where the
 | |
| *>          rotation threshold and the total number of sweeps are given in
 | |
| *>          TOL and NSWEEP, respectively.
 | |
| *>          (See the descriptions of N1, A, TOL and NSWEEP.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] SVA
 | |
| *> \verbatim
 | |
| *>          SVA is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On entry, SVA contains the Euclidean norms of the columns of
 | |
| *>          the matrix A*diag(D).
 | |
| *>          On exit, SVA contains the Euclidean norms of the columns of
 | |
| *>          the matrix onexit*diag(D_onexit).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] MV
 | |
| *> \verbatim
 | |
| *>          MV is INTEGER
 | |
| *>          If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
 | |
| *>                           sequence of Jacobi rotations.
 | |
| *>          If JOBV = 'N',   then MV is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] V
 | |
| *> \verbatim
 | |
| *>          V is DOUBLE PRECISION array, dimension (LDV,N)
 | |
| *>          If JOBV .EQ. 'V' then N rows of V are post-multipled by a
 | |
| *>                           sequence of Jacobi rotations.
 | |
| *>          If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
 | |
| *>                           sequence of Jacobi rotations.
 | |
| *>          If JOBV = 'N',   then V is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV
 | |
| *> \verbatim
 | |
| *>          LDV is INTEGER
 | |
| *>          The leading dimension of the array V,  LDV >= 1.
 | |
| *>          If JOBV = 'V', LDV .GE. N.
 | |
| *>          If JOBV = 'A', LDV .GE. MV.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] EPS
 | |
| *> \verbatim
 | |
| *>          EPS is DOUBLE PRECISION
 | |
| *>          EPS = DLAMCH('Epsilon')
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SFMIN
 | |
| *> \verbatim
 | |
| *>          SFMIN is DOUBLE PRECISION
 | |
| *>          SFMIN = DLAMCH('Safe Minimum')
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TOL
 | |
| *> \verbatim
 | |
| *>          TOL is DOUBLE PRECISION
 | |
| *>          TOL is the threshold for Jacobi rotations. For a pair
 | |
| *>          A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
 | |
| *>          applied only if DABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NSWEEP
 | |
| *> \verbatim
 | |
| *>          NSWEEP is INTEGER
 | |
| *>          NSWEEP is the number of sweeps of Jacobi rotations to be
 | |
| *>          performed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          LWORK is the dimension of WORK. LWORK .GE. M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0 : successful exit.
 | |
| *>          < 0 : if INFO = -i, then the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup doubleOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV,
 | |
|      $                   EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       DOUBLE PRECISION   EPS, SFMIN, TOL
 | |
|       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, N1, NSWEEP
 | |
|       CHARACTER*1        JOBV
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), D( N ), SVA( N ), V( LDV, * ),
 | |
|      $                   WORK( LWORK )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, HALF, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       DOUBLE PRECISION   AAPP, AAPP0, AAPQ, AAQQ, APOAQ, AQOAP, BIG,
 | |
|      $                   BIGTHETA, CS, LARGE, MXAAPQ, MXSINJ, ROOTBIG,
 | |
|      $                   ROOTEPS, ROOTSFMIN, ROOTTOL, SMALL, SN, T,
 | |
|      $                   TEMP1, THETA, THSIGN
 | |
|       INTEGER            BLSKIP, EMPTSW, i, ibr, igl, IERR, IJBLSK,
 | |
|      $                   ISWROT, jbc, jgl, KBL, MVL, NOTROT, nblc, nblr,
 | |
|      $                   p, PSKIPPED, q, ROWSKIP, SWBAND
 | |
|       LOGICAL            APPLV, ROTOK, RSVEC
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       DOUBLE PRECISION   FASTR( 5 )
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DABS, DMAX1, DBLE, MIN0, DSIGN, DSQRT
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DDOT, DNRM2
 | |
|       INTEGER            IDAMAX
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           IDAMAX, LSAME, DDOT, DNRM2
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DAXPY, DCOPY, DLASCL, DLASSQ, DROTM, DSWAP
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       APPLV = LSAME( JOBV, 'A' )
 | |
|       RSVEC = LSAME( JOBV, 'V' )
 | |
|       IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N1.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDA.LT.M ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( ( RSVEC.OR.APPLV ) .AND. ( MV.LT.0 ) ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( ( RSVEC.AND.( LDV.LT.N ) ).OR. 
 | |
|      $         ( APPLV.AND.( LDV.LT.MV ) )  ) THEN
 | |
|          INFO = -11
 | |
|       ELSE IF( TOL.LE.EPS ) THEN
 | |
|          INFO = -14
 | |
|       ELSE IF( NSWEEP.LT.0 ) THEN
 | |
|          INFO = -15
 | |
|       ELSE IF( LWORK.LT.M ) THEN
 | |
|          INFO = -17
 | |
|       ELSE
 | |
|          INFO = 0
 | |
|       END IF
 | |
| *
 | |
| *     #:(
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DGSVJ1', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( RSVEC ) THEN
 | |
|          MVL = N
 | |
|       ELSE IF( APPLV ) THEN
 | |
|          MVL = MV
 | |
|       END IF
 | |
|       RSVEC = RSVEC .OR. APPLV
 | |
| 
 | |
|       ROOTEPS = DSQRT( EPS )
 | |
|       ROOTSFMIN = DSQRT( SFMIN )
 | |
|       SMALL = SFMIN / EPS
 | |
|       BIG = ONE / SFMIN
 | |
|       ROOTBIG = ONE / ROOTSFMIN
 | |
|       LARGE = BIG / DSQRT( DBLE( M*N ) )
 | |
|       BIGTHETA = ONE / ROOTEPS
 | |
|       ROOTTOL = DSQRT( TOL )
 | |
| *
 | |
| *     .. Initialize the right singular vector matrix ..
 | |
| *
 | |
| *     RSVEC = LSAME( JOBV, 'Y' )
 | |
| *
 | |
|       EMPTSW = N1*( N-N1 )
 | |
|       NOTROT = 0
 | |
|       FASTR( 1 ) = ZERO
 | |
| *
 | |
| *     .. Row-cyclic pivot strategy with de Rijk's pivoting ..
 | |
| *
 | |
|       KBL = MIN0( 8, N )
 | |
|       NBLR = N1 / KBL
 | |
|       IF( ( NBLR*KBL ).NE.N1 )NBLR = NBLR + 1
 | |
| 
 | |
| *     .. the tiling is nblr-by-nblc [tiles]
 | |
| 
 | |
|       NBLC = ( N-N1 ) / KBL
 | |
|       IF( ( NBLC*KBL ).NE.( N-N1 ) )NBLC = NBLC + 1
 | |
|       BLSKIP = ( KBL**2 ) + 1
 | |
| *[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
 | |
| 
 | |
|       ROWSKIP = MIN0( 5, KBL )
 | |
| *[TP] ROWSKIP is a tuning parameter.
 | |
|       SWBAND = 0
 | |
| *[TP] SWBAND is a tuning parameter. It is meaningful and effective
 | |
| *     if SGESVJ is used as a computational routine in the preconditioned
 | |
| *     Jacobi SVD algorithm SGESVJ.
 | |
| *
 | |
| *
 | |
| *     | *   *   * [x] [x] [x]|
 | |
| *     | *   *   * [x] [x] [x]|    Row-cycling in the nblr-by-nblc [x] blocks.
 | |
| *     | *   *   * [x] [x] [x]|    Row-cyclic pivoting inside each [x] block.
 | |
| *     |[x] [x] [x] *   *   * |
 | |
| *     |[x] [x] [x] *   *   * |
 | |
| *     |[x] [x] [x] *   *   * |
 | |
| *
 | |
| *
 | |
|       DO 1993 i = 1, NSWEEP
 | |
| *     .. go go go ...
 | |
| *
 | |
|          MXAAPQ = ZERO
 | |
|          MXSINJ = ZERO
 | |
|          ISWROT = 0
 | |
| *
 | |
|          NOTROT = 0
 | |
|          PSKIPPED = 0
 | |
| *
 | |
|          DO 2000 ibr = 1, NBLR
 | |
| 
 | |
|             igl = ( ibr-1 )*KBL + 1
 | |
| *
 | |
| *
 | |
| *........................................................
 | |
| * ... go to the off diagonal blocks
 | |
| 
 | |
|             igl = ( ibr-1 )*KBL + 1
 | |
| 
 | |
|             DO 2010 jbc = 1, NBLC
 | |
| 
 | |
|                jgl = N1 + ( jbc-1 )*KBL + 1
 | |
| 
 | |
| *        doing the block at ( ibr, jbc )
 | |
| 
 | |
|                IJBLSK = 0
 | |
|                DO 2100 p = igl, MIN0( igl+KBL-1, N1 )
 | |
| 
 | |
|                   AAPP = SVA( p )
 | |
| 
 | |
|                   IF( AAPP.GT.ZERO ) THEN
 | |
| 
 | |
|                      PSKIPPED = 0
 | |
| 
 | |
|                      DO 2200 q = jgl, MIN0( jgl+KBL-1, N )
 | |
| *
 | |
|                         AAQQ = SVA( q )
 | |
| 
 | |
|                         IF( AAQQ.GT.ZERO ) THEN
 | |
|                            AAPP0 = AAPP
 | |
| *
 | |
| *     .. M x 2 Jacobi SVD ..
 | |
| *
 | |
| *        .. Safe Gram matrix computation ..
 | |
| *
 | |
|                            IF( AAQQ.GE.ONE ) THEN
 | |
|                               IF( AAPP.GE.AAQQ ) THEN
 | |
|                                  ROTOK = ( SMALL*AAPP ).LE.AAQQ
 | |
|                               ELSE
 | |
|                                  ROTOK = ( SMALL*AAQQ ).LE.AAPP
 | |
|                               END IF
 | |
|                               IF( AAPP.LT.( BIG / AAQQ ) ) THEN
 | |
|                                  AAPQ = ( DDOT( M, A( 1, p ), 1, A( 1,
 | |
|      $                                  q ), 1 )*D( p )*D( q ) / AAQQ )
 | |
|      $                                  / AAPP
 | |
|                               ELSE
 | |
|                                  CALL DCOPY( M, A( 1, p ), 1, WORK, 1 )
 | |
|                                  CALL DLASCL( 'G', 0, 0, AAPP, D( p ),
 | |
|      $                                        M, 1, WORK, LDA, IERR )
 | |
|                                  AAPQ = DDOT( M, WORK, 1, A( 1, q ),
 | |
|      $                                  1 )*D( q ) / AAQQ
 | |
|                               END IF
 | |
|                            ELSE
 | |
|                               IF( AAPP.GE.AAQQ ) THEN
 | |
|                                  ROTOK = AAPP.LE.( AAQQ / SMALL )
 | |
|                               ELSE
 | |
|                                  ROTOK = AAQQ.LE.( AAPP / SMALL )
 | |
|                               END IF
 | |
|                               IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
 | |
|                                  AAPQ = ( DDOT( M, A( 1, p ), 1, A( 1,
 | |
|      $                                  q ), 1 )*D( p )*D( q ) / AAQQ )
 | |
|      $                                  / AAPP
 | |
|                               ELSE
 | |
|                                  CALL DCOPY( M, A( 1, q ), 1, WORK, 1 )
 | |
|                                  CALL DLASCL( 'G', 0, 0, AAQQ, D( q ),
 | |
|      $                                        M, 1, WORK, LDA, IERR )
 | |
|                                  AAPQ = DDOT( M, WORK, 1, A( 1, p ),
 | |
|      $                                  1 )*D( p ) / AAPP
 | |
|                               END IF
 | |
|                            END IF
 | |
| 
 | |
|                            MXAAPQ = DMAX1( MXAAPQ, DABS( AAPQ ) )
 | |
| 
 | |
| *        TO rotate or NOT to rotate, THAT is the question ...
 | |
| *
 | |
|                            IF( DABS( AAPQ ).GT.TOL ) THEN
 | |
|                               NOTROT = 0
 | |
| *           ROTATED  = ROTATED + 1
 | |
|                               PSKIPPED = 0
 | |
|                               ISWROT = ISWROT + 1
 | |
| *
 | |
|                               IF( ROTOK ) THEN
 | |
| *
 | |
|                                  AQOAP = AAQQ / AAPP
 | |
|                                  APOAQ = AAPP / AAQQ
 | |
|                                  THETA = -HALF*DABS(AQOAP-APOAQ) / AAPQ
 | |
|                                  IF( AAQQ.GT.AAPP0 )THETA = -THETA
 | |
| 
 | |
|                                  IF( DABS( THETA ).GT.BIGTHETA ) THEN
 | |
|                                     T = HALF / THETA
 | |
|                                     FASTR( 3 ) = T*D( p ) / D( q )
 | |
|                                     FASTR( 4 ) = -T*D( q ) / D( p )
 | |
|                                     CALL DROTM( M, A( 1, p ), 1,
 | |
|      $                                          A( 1, q ), 1, FASTR )
 | |
|                                     IF( RSVEC )CALL DROTM( MVL,
 | |
|      $                                              V( 1, p ), 1,
 | |
|      $                                              V( 1, q ), 1,
 | |
|      $                                              FASTR )
 | |
|                                     SVA( q ) = AAQQ*DSQRT( DMAX1( ZERO,
 | |
|      $                                         ONE+T*APOAQ*AAPQ ) )
 | |
|                                     AAPP = AAPP*DSQRT( DMAX1( ZERO,
 | |
|      $                                     ONE-T*AQOAP*AAPQ ) )
 | |
|                                     MXSINJ = DMAX1( MXSINJ, DABS( T ) )
 | |
|                                  ELSE
 | |
| *
 | |
| *                 .. choose correct signum for THETA and rotate
 | |
| *
 | |
|                                     THSIGN = -DSIGN( ONE, AAPQ )
 | |
|                                     IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
 | |
|                                     T = ONE / ( THETA+THSIGN*
 | |
|      $                                  DSQRT( ONE+THETA*THETA ) )
 | |
|                                     CS = DSQRT( ONE / ( ONE+T*T ) )
 | |
|                                     SN = T*CS
 | |
|                                     MXSINJ = DMAX1( MXSINJ, DABS( SN ) )
 | |
|                                     SVA( q ) = AAQQ*DSQRT( DMAX1( ZERO,
 | |
|      $                                         ONE+T*APOAQ*AAPQ ) )
 | |
|                                     AAPP = AAPP*DSQRT( DMAX1( ZERO, 
 | |
|      $                                    ONE-T*AQOAP*AAPQ ) )
 | |
| 
 | |
|                                     APOAQ = D( p ) / D( q )
 | |
|                                     AQOAP = D( q ) / D( p )
 | |
|                                     IF( D( p ).GE.ONE ) THEN
 | |
| *
 | |
|                                        IF( D( q ).GE.ONE ) THEN
 | |
|                                           FASTR( 3 ) = T*APOAQ
 | |
|                                           FASTR( 4 ) = -T*AQOAP
 | |
|                                           D( p ) = D( p )*CS
 | |
|                                           D( q ) = D( q )*CS
 | |
|                                           CALL DROTM( M, A( 1, p ), 1,
 | |
|      $                                                A( 1, q ), 1,
 | |
|      $                                                FASTR )
 | |
|                                           IF( RSVEC )CALL DROTM( MVL,
 | |
|      $                                        V( 1, p ), 1, V( 1, q ),
 | |
|      $                                        1, FASTR )
 | |
|                                        ELSE
 | |
|                                           CALL DAXPY( M, -T*AQOAP,
 | |
|      $                                                A( 1, q ), 1,
 | |
|      $                                                A( 1, p ), 1 )
 | |
|                                           CALL DAXPY( M, CS*SN*APOAQ,
 | |
|      $                                                A( 1, p ), 1,
 | |
|      $                                                A( 1, q ), 1 )
 | |
|                                           IF( RSVEC ) THEN
 | |
|                                              CALL DAXPY( MVL, -T*AQOAP,
 | |
|      $                                                   V( 1, q ), 1,
 | |
|      $                                                   V( 1, p ), 1 )
 | |
|                                              CALL DAXPY( MVL,
 | |
|      $                                                   CS*SN*APOAQ,
 | |
|      $                                                   V( 1, p ), 1,
 | |
|      $                                                   V( 1, q ), 1 )
 | |
|                                           END IF
 | |
|                                           D( p ) = D( p )*CS
 | |
|                                           D( q ) = D( q ) / CS
 | |
|                                        END IF
 | |
|                                     ELSE
 | |
|                                        IF( D( q ).GE.ONE ) THEN
 | |
|                                           CALL DAXPY( M, T*APOAQ,
 | |
|      $                                                A( 1, p ), 1,
 | |
|      $                                                A( 1, q ), 1 )
 | |
|                                           CALL DAXPY( M, -CS*SN*AQOAP,
 | |
|      $                                                A( 1, q ), 1,
 | |
|      $                                                A( 1, p ), 1 )
 | |
|                                           IF( RSVEC ) THEN
 | |
|                                              CALL DAXPY( MVL, T*APOAQ,
 | |
|      $                                                   V( 1, p ), 1,
 | |
|      $                                                   V( 1, q ), 1 )
 | |
|                                              CALL DAXPY( MVL,
 | |
|      $                                                   -CS*SN*AQOAP,
 | |
|      $                                                   V( 1, q ), 1,
 | |
|      $                                                   V( 1, p ), 1 )
 | |
|                                           END IF
 | |
|                                           D( p ) = D( p ) / CS
 | |
|                                           D( q ) = D( q )*CS
 | |
|                                        ELSE
 | |
|                                           IF( D( p ).GE.D( q ) ) THEN
 | |
|                                              CALL DAXPY( M, -T*AQOAP,
 | |
|      $                                                   A( 1, q ), 1,
 | |
|      $                                                   A( 1, p ), 1 )
 | |
|                                              CALL DAXPY( M, CS*SN*APOAQ,
 | |
|      $                                                   A( 1, p ), 1,
 | |
|      $                                                   A( 1, q ), 1 )
 | |
|                                              D( p ) = D( p )*CS
 | |
|                                              D( q ) = D( q ) / CS
 | |
|                                              IF( RSVEC ) THEN
 | |
|                                                 CALL DAXPY( MVL,
 | |
|      $                                               -T*AQOAP,
 | |
|      $                                               V( 1, q ), 1,
 | |
|      $                                               V( 1, p ), 1 )
 | |
|                                                 CALL DAXPY( MVL,
 | |
|      $                                               CS*SN*APOAQ,
 | |
|      $                                               V( 1, p ), 1,
 | |
|      $                                               V( 1, q ), 1 )
 | |
|                                              END IF
 | |
|                                           ELSE
 | |
|                                              CALL DAXPY( M, T*APOAQ,
 | |
|      $                                                   A( 1, p ), 1,
 | |
|      $                                                   A( 1, q ), 1 )
 | |
|                                              CALL DAXPY( M,
 | |
|      $                                                   -CS*SN*AQOAP,
 | |
|      $                                                   A( 1, q ), 1,
 | |
|      $                                                   A( 1, p ), 1 )
 | |
|                                              D( p ) = D( p ) / CS
 | |
|                                              D( q ) = D( q )*CS
 | |
|                                              IF( RSVEC ) THEN
 | |
|                                                 CALL DAXPY( MVL,
 | |
|      $                                               T*APOAQ, V( 1, p ),
 | |
|      $                                               1, V( 1, q ), 1 )
 | |
|                                                 CALL DAXPY( MVL,
 | |
|      $                                               -CS*SN*AQOAP,
 | |
|      $                                               V( 1, q ), 1,
 | |
|      $                                               V( 1, p ), 1 )
 | |
|                                              END IF
 | |
|                                           END IF
 | |
|                                        END IF
 | |
|                                     END IF
 | |
|                                  END IF
 | |
| 
 | |
|                               ELSE
 | |
|                                  IF( AAPP.GT.AAQQ ) THEN
 | |
|                                     CALL DCOPY( M, A( 1, p ), 1, WORK,
 | |
|      $                                          1 )
 | |
|                                     CALL DLASCL( 'G', 0, 0, AAPP, ONE,
 | |
|      $                                           M, 1, WORK, LDA, IERR )
 | |
|                                     CALL DLASCL( 'G', 0, 0, AAQQ, ONE,
 | |
|      $                                           M, 1, A( 1, q ), LDA,
 | |
|      $                                           IERR )
 | |
|                                     TEMP1 = -AAPQ*D( p ) / D( q )
 | |
|                                     CALL DAXPY( M, TEMP1, WORK, 1,
 | |
|      $                                          A( 1, q ), 1 )
 | |
|                                     CALL DLASCL( 'G', 0, 0, ONE, AAQQ,
 | |
|      $                                           M, 1, A( 1, q ), LDA,
 | |
|      $                                           IERR )
 | |
|                                     SVA( q ) = AAQQ*DSQRT( DMAX1( ZERO,
 | |
|      $                                         ONE-AAPQ*AAPQ ) )
 | |
|                                     MXSINJ = DMAX1( MXSINJ, SFMIN )
 | |
|                                  ELSE
 | |
|                                     CALL DCOPY( M, A( 1, q ), 1, WORK,
 | |
|      $                                          1 )
 | |
|                                     CALL DLASCL( 'G', 0, 0, AAQQ, ONE,
 | |
|      $                                           M, 1, WORK, LDA, IERR )
 | |
|                                     CALL DLASCL( 'G', 0, 0, AAPP, ONE,
 | |
|      $                                           M, 1, A( 1, p ), LDA,
 | |
|      $                                           IERR )
 | |
|                                     TEMP1 = -AAPQ*D( q ) / D( p )
 | |
|                                     CALL DAXPY( M, TEMP1, WORK, 1,
 | |
|      $                                          A( 1, p ), 1 )
 | |
|                                     CALL DLASCL( 'G', 0, 0, ONE, AAPP,
 | |
|      $                                           M, 1, A( 1, p ), LDA,
 | |
|      $                                           IERR )
 | |
|                                     SVA( p ) = AAPP*DSQRT( DMAX1( ZERO,
 | |
|      $                                         ONE-AAPQ*AAPQ ) )
 | |
|                                     MXSINJ = DMAX1( MXSINJ, SFMIN )
 | |
|                                  END IF
 | |
|                               END IF
 | |
| *           END IF ROTOK THEN ... ELSE
 | |
| *
 | |
| *           In the case of cancellation in updating SVA(q)
 | |
| *           .. recompute SVA(q)
 | |
|                               IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
 | |
|      $                            THEN
 | |
|                                  IF( ( AAQQ.LT.ROOTBIG ) .AND.
 | |
|      $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
 | |
|                                     SVA( q ) = DNRM2( M, A( 1, q ), 1 )*
 | |
|      $                                         D( q )
 | |
|                                  ELSE
 | |
|                                     T = ZERO
 | |
|                                     AAQQ = ONE
 | |
|                                     CALL DLASSQ( M, A( 1, q ), 1, T,
 | |
|      $                                           AAQQ )
 | |
|                                     SVA( q ) = T*DSQRT( AAQQ )*D( q )
 | |
|                                  END IF
 | |
|                               END IF
 | |
|                               IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
 | |
|                                  IF( ( AAPP.LT.ROOTBIG ) .AND.
 | |
|      $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
 | |
|                                     AAPP = DNRM2( M, A( 1, p ), 1 )*
 | |
|      $                                     D( p )
 | |
|                                  ELSE
 | |
|                                     T = ZERO
 | |
|                                     AAPP = ONE
 | |
|                                     CALL DLASSQ( M, A( 1, p ), 1, T,
 | |
|      $                                           AAPP )
 | |
|                                     AAPP = T*DSQRT( AAPP )*D( p )
 | |
|                                  END IF
 | |
|                                  SVA( p ) = AAPP
 | |
|                               END IF
 | |
| *              end of OK rotation
 | |
|                            ELSE
 | |
|                               NOTROT = NOTROT + 1
 | |
| *           SKIPPED  = SKIPPED  + 1
 | |
|                               PSKIPPED = PSKIPPED + 1
 | |
|                               IJBLSK = IJBLSK + 1
 | |
|                            END IF
 | |
|                         ELSE
 | |
|                            NOTROT = NOTROT + 1
 | |
|                            PSKIPPED = PSKIPPED + 1
 | |
|                            IJBLSK = IJBLSK + 1
 | |
|                         END IF
 | |
| 
 | |
| *      IF ( NOTROT .GE. EMPTSW )  GO TO 2011
 | |
|                         IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
 | |
|      $                      THEN
 | |
|                            SVA( p ) = AAPP
 | |
|                            NOTROT = 0
 | |
|                            GO TO 2011
 | |
|                         END IF
 | |
|                         IF( ( i.LE.SWBAND ) .AND.
 | |
|      $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
 | |
|                            AAPP = -AAPP
 | |
|                            NOTROT = 0
 | |
|                            GO TO 2203
 | |
|                         END IF
 | |
| 
 | |
| *
 | |
|  2200                CONTINUE
 | |
| *        end of the q-loop
 | |
|  2203                CONTINUE
 | |
| 
 | |
|                      SVA( p ) = AAPP
 | |
| *
 | |
|                   ELSE
 | |
|                      IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
 | |
|      $                   MIN0( jgl+KBL-1, N ) - jgl + 1
 | |
|                      IF( AAPP.LT.ZERO )NOTROT = 0
 | |
| ***      IF ( NOTROT .GE. EMPTSW )  GO TO 2011
 | |
|                   END IF
 | |
| 
 | |
|  2100          CONTINUE
 | |
| *     end of the p-loop
 | |
|  2010       CONTINUE
 | |
| *     end of the jbc-loop
 | |
|  2011       CONTINUE
 | |
| *2011 bailed out of the jbc-loop
 | |
|             DO 2012 p = igl, MIN0( igl+KBL-1, N )
 | |
|                SVA( p ) = DABS( SVA( p ) )
 | |
|  2012       CONTINUE
 | |
| ***   IF ( NOTROT .GE. EMPTSW ) GO TO 1994
 | |
|  2000    CONTINUE
 | |
| *2000 :: end of the ibr-loop
 | |
| *
 | |
| *     .. update SVA(N)
 | |
|          IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
 | |
|      $       THEN
 | |
|             SVA( N ) = DNRM2( M, A( 1, N ), 1 )*D( N )
 | |
|          ELSE
 | |
|             T = ZERO
 | |
|             AAPP = ONE
 | |
|             CALL DLASSQ( M, A( 1, N ), 1, T, AAPP )
 | |
|             SVA( N ) = T*DSQRT( AAPP )*D( N )
 | |
|          END IF
 | |
| *
 | |
| *     Additional steering devices
 | |
| *
 | |
|          IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
 | |
|      $       ( ISWROT.LE.N ) ) )SWBAND = i
 | |
| 
 | |
|          IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.DBLE( N )*TOL ) .AND.
 | |
|      $       ( DBLE( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
 | |
|             GO TO 1994
 | |
|          END IF
 | |
| 
 | |
| *
 | |
|          IF( NOTROT.GE.EMPTSW )GO TO 1994
 | |
| 
 | |
|  1993 CONTINUE
 | |
| *     end i=1:NSWEEP loop
 | |
| * #:) Reaching this point means that the procedure has completed the given
 | |
| *     number of sweeps.
 | |
|       INFO = NSWEEP - 1
 | |
|       GO TO 1995
 | |
|  1994 CONTINUE
 | |
| * #:) Reaching this point means that during the i-th sweep all pivots were
 | |
| *     below the given threshold, causing early exit.
 | |
| 
 | |
|       INFO = 0
 | |
| * #:) INFO = 0 confirms successful iterations.
 | |
|  1995 CONTINUE
 | |
| *
 | |
| *     Sort the vector D
 | |
| *
 | |
|       DO 5991 p = 1, N - 1
 | |
|          q = IDAMAX( N-p+1, SVA( p ), 1 ) + p - 1
 | |
|          IF( p.NE.q ) THEN
 | |
|             TEMP1 = SVA( p )
 | |
|             SVA( p ) = SVA( q )
 | |
|             SVA( q ) = TEMP1
 | |
|             TEMP1 = D( p )
 | |
|             D( p ) = D( q )
 | |
|             D( q ) = TEMP1
 | |
|             CALL DSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
 | |
|             IF( RSVEC )CALL DSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
 | |
|          END IF
 | |
|  5991 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *     ..
 | |
| *     .. END OF DGSVJ1
 | |
| *     ..
 | |
|       END
 |