188 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			188 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
      SUBROUTINE CPOTRFF( UPLO, N, A, LDA, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK routine (version 3.0) --
 | 
						|
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
 | 
						|
*     Courant Institute, Argonne National Lab, and Rice University
 | 
						|
*     September 30, 1994
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, LDA, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            A( LDA, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  Purpose
 | 
						|
*  =======
 | 
						|
*
 | 
						|
*  CPOTRF computes the Cholesky factorization of a complex Hermitian
 | 
						|
*  positive definite matrix A.
 | 
						|
*
 | 
						|
*  The factorization has the form
 | 
						|
*     A = U**H * U,  if UPLO = 'U', or
 | 
						|
*     A = L  * L**H,  if UPLO = 'L',
 | 
						|
*  where U is an upper triangular matrix and L is lower triangular.
 | 
						|
*
 | 
						|
*  This is the block version of the algorithm, calling Level 3 BLAS.
 | 
						|
*
 | 
						|
*  Arguments
 | 
						|
*  =========
 | 
						|
*
 | 
						|
*  UPLO    (input) CHARACTER*1
 | 
						|
*          = 'U':  Upper triangle of A is stored;
 | 
						|
*          = 'L':  Lower triangle of A is stored.
 | 
						|
*
 | 
						|
*  N       (input) INTEGER
 | 
						|
*          The order of the matrix A.  N >= 0.
 | 
						|
*
 | 
						|
*  A       (input/output) COMPLEX array, dimension (LDA,N)
 | 
						|
*          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
 | 
						|
*          N-by-N upper triangular part of A contains the upper
 | 
						|
*          triangular part of the matrix A, and the strictly lower
 | 
						|
*          triangular part of A is not referenced.  If UPLO = 'L', the
 | 
						|
*          leading N-by-N lower triangular part of A contains the lower
 | 
						|
*          triangular part of the matrix A, and the strictly upper
 | 
						|
*          triangular part of A is not referenced.
 | 
						|
*
 | 
						|
*          On exit, if INFO = 0, the factor U or L from the Cholesky
 | 
						|
*          factorization A = U**H*U or A = L*L**H.
 | 
						|
*
 | 
						|
*  LDA     (input) INTEGER
 | 
						|
*          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*
 | 
						|
*  INFO    (output) INTEGER
 | 
						|
*          = 0:  successful exit
 | 
						|
*          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*          > 0:  if INFO = i, the leading minor of order i is not
 | 
						|
*                positive definite, and the factorization could not be
 | 
						|
*                completed.
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE
 | 
						|
      COMPLEX            CONE
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, CONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            J, JB, NB
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEMM, CHERK, CPOTF2, CTRSM, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CPOTRF', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Determine the block size for this environment.
 | 
						|
*
 | 
						|
      NB = 56
 | 
						|
 | 
						|
      IF( NB.LE.1 .OR. NB.GE.N ) THEN
 | 
						|
*
 | 
						|
*        Use unblocked code.
 | 
						|
*
 | 
						|
         CALL CPOTF2( UPLO, N, A, LDA, INFO )
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Use blocked code.
 | 
						|
*
 | 
						|
         IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*           Compute the Cholesky factorization A = U'*U.
 | 
						|
*
 | 
						|
            DO 10 J = 1, N, NB
 | 
						|
*
 | 
						|
*              Update and factorize the current diagonal block and test
 | 
						|
*              for non-positive-definiteness.
 | 
						|
*
 | 
						|
               JB = MIN( NB, N-J+1 )
 | 
						|
               CALL CHERK( 'Upper', 'Conjugate transpose', JB, J-1,
 | 
						|
     $                     -ONE, A( 1, J ), LDA, ONE, A( J, J ), LDA )
 | 
						|
               CALL CPOTF2( 'Upper', JB, A( J, J ), LDA, INFO )
 | 
						|
               IF( INFO.NE.0 )
 | 
						|
     $            GO TO 30
 | 
						|
               IF( J+JB.LE.N ) THEN
 | 
						|
*
 | 
						|
*                 Compute the current block row.
 | 
						|
*
 | 
						|
                  CALL CGEMM( 'Conjugate transpose', 'No transpose', JB,
 | 
						|
     $                        N-J-JB+1, J-1, -CONE, A( 1, J ), LDA,
 | 
						|
     $                        A( 1, J+JB ), LDA, CONE, A( J, J+JB ),
 | 
						|
     $                        LDA )
 | 
						|
                  CALL CTRSM( 'Left', 'Upper', 'Conjugate transpose',
 | 
						|
     $                        'Non-unit', JB, N-J-JB+1, CONE, A( J, J ),
 | 
						|
     $                        LDA, A( J, J+JB ), LDA )
 | 
						|
               END IF
 | 
						|
   10       CONTINUE
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Compute the Cholesky factorization A = L*L'.
 | 
						|
*
 | 
						|
            DO 20 J = 1, N, NB
 | 
						|
*
 | 
						|
*              Update and factorize the current diagonal block and test
 | 
						|
*              for non-positive-definiteness.
 | 
						|
*
 | 
						|
               JB = MIN( NB, N-J+1 )
 | 
						|
               CALL CHERK( 'Lower', 'No transpose', JB, J-1, -ONE,
 | 
						|
     $                     A( J, 1 ), LDA, ONE, A( J, J ), LDA )
 | 
						|
               CALL CPOTF2( 'Lower', JB, A( J, J ), LDA, INFO )
 | 
						|
               IF( INFO.NE.0 )
 | 
						|
     $            GO TO 30
 | 
						|
               IF( J+JB.LE.N ) THEN
 | 
						|
*
 | 
						|
*                 Compute the current block column.
 | 
						|
*
 | 
						|
                  CALL CGEMM( 'No transpose', 'Conjugate transpose',
 | 
						|
     $                        N-J-JB+1, JB, J-1, -CONE, A( J+JB, 1 ),
 | 
						|
     $                        LDA, A( J, 1 ), LDA, CONE, A( J+JB, J ),
 | 
						|
     $                        LDA )
 | 
						|
                  CALL CTRSM( 'Right', 'Lower', 'Conjugate transpose',
 | 
						|
     $                        'Non-unit', N-J-JB+1, JB, CONE, A( J, J ),
 | 
						|
     $                        LDA, A( J+JB, J ), LDA )
 | 
						|
               END IF
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      GO TO 40
 | 
						|
*
 | 
						|
   30 CONTINUE
 | 
						|
      INFO = INFO + J - 1
 | 
						|
*
 | 
						|
   40 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CPOTRF
 | 
						|
*
 | 
						|
      END
 |