177 lines
7.6 KiB
C
177 lines
7.6 KiB
C
/***************************************************************************
|
|
Copyright (c) 2020, The OpenBLAS Project
|
|
All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
3. Neither the name of the OpenBLAS project nor the names of
|
|
its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
|
|
#include "common.h"
|
|
|
|
#ifdef RISCV64_ZVL256B
|
|
# define LMUL m1
|
|
# if defined(DOUBLE)
|
|
# define ELEN 64
|
|
# define MLEN 64
|
|
# else
|
|
# define ELEN 32
|
|
# define MLEN 32
|
|
# endif
|
|
#else
|
|
# define LMUL m4
|
|
# if defined(DOUBLE)
|
|
# define ELEN 64
|
|
# define MLEN 16
|
|
# else
|
|
# define ELEN 32
|
|
# define MLEN 8
|
|
# endif
|
|
#endif
|
|
|
|
#define _
|
|
#define JOIN2_X(x, y) x ## y
|
|
#define JOIN2(x, y) JOIN2_X(x, y)
|
|
#define JOIN(v, w, x, y, z) JOIN2( JOIN2( JOIN2( JOIN2( v, w ), x), y), z)
|
|
|
|
#define VSETVL JOIN(__riscv_vsetvl, _e, ELEN, LMUL, _)
|
|
#define FLOAT_V_T JOIN(vfloat, ELEN, LMUL, _t, _)
|
|
#define FLOAT_V_T_M1 JOIN(vfloat, ELEN, m1, _t, _)
|
|
#define VLEV_FLOAT JOIN(__riscv_vle, ELEN, _v_f, ELEN, LMUL)
|
|
#define VLSEV_FLOAT JOIN(__riscv_vlse, ELEN, _v_f, ELEN, LMUL)
|
|
#define VFMVVF_FLOAT JOIN(__riscv_vfmv, _v_f_f, ELEN, LMUL, _)
|
|
#define VFMVVF_FLOAT_M1 JOIN(__riscv_vfmv, _v_f_f, ELEN, m1, _)
|
|
#define MASK_T JOIN(vbool, MLEN, _t, _, _)
|
|
#define VFABS JOIN(__riscv_vfabs, _v_f, ELEN, LMUL, _)
|
|
#define VMFNE JOIN(__riscv_vmfne_vf_f,ELEN, LMUL, _b, MLEN)
|
|
#define VMFGT JOIN(__riscv_vmfgt_vv_f,ELEN, LMUL, _b, MLEN)
|
|
#define VMFEQ JOIN(__riscv_vmfeq_vv_f,ELEN, LMUL, _b, MLEN)
|
|
#define VCPOP JOIN(__riscv_vcpop, _m_b, MLEN, _, _)
|
|
#define VFREDMAX JOIN(__riscv_vfredmax_vs_f,ELEN,LMUL, JOIN2(_f, ELEN), m1)
|
|
#define VFIRST JOIN(__riscv_vfirst, _m_b, MLEN, _, _)
|
|
#define VRGATHER JOIN(__riscv_vrgather, _vx_f, ELEN, LMUL, _)
|
|
#define VFDIV JOIN(__riscv_vfdiv, _vf_f, ELEN, LMUL, _)
|
|
#define VFDIV_M JOIN(__riscv_vfdiv, _vv_f, ELEN, LMUL, _mu)
|
|
#define VFMUL JOIN(__riscv_vfmul, _vv_f, ELEN, LMUL, _)
|
|
#define VFMACC JOIN(__riscv_vfmacc, _vv_f, ELEN, LMUL, _)
|
|
#define VFMACC_M JOIN(__riscv_vfmacc, _vv_f, ELEN, LMUL, _mu)
|
|
#define VMSOF JOIN(__riscv_vmsof, _m_b, MLEN, _, _)
|
|
#define VMANDN JOIN(__riscv_vmandn, _mm_b, MLEN, _, _)
|
|
#define VFREDUSUM JOIN(__riscv_vfredusum_vs_f,ELEN,LMUL, JOIN2(_f, ELEN), m1)
|
|
#if defined(DOUBLE)
|
|
#define ABS fabs
|
|
#else
|
|
#define ABS fabsf
|
|
#endif
|
|
|
|
#define EXTRACT_FLOAT0_V(v) JOIN(__riscv_vfmv_f_s_f, ELEN, LMUL, _f, ELEN)(v)
|
|
|
|
|
|
FLOAT CNAME(BLASLONG n, FLOAT *x, BLASLONG inc_x)
|
|
{
|
|
BLASLONG i=0;
|
|
|
|
if(n < 0) return(0.0);
|
|
|
|
FLOAT_V_T v_ssq, v_scale, v0, v1, v_zero;
|
|
unsigned int gvl = 0;
|
|
FLOAT_V_T_M1 v_res, v_z0;
|
|
|
|
v_res = VFMVVF_FLOAT_M1(0, 1);
|
|
v_z0 = VFMVVF_FLOAT_M1(0, 1);
|
|
|
|
gvl = VSETVL(n);
|
|
v_ssq = VFMVVF_FLOAT(0, gvl);
|
|
v_scale = VFMVVF_FLOAT(0, gvl);
|
|
v_zero = VFMVVF_FLOAT(0, gvl);
|
|
|
|
unsigned int stride_x = inc_x * sizeof(FLOAT) * 2;
|
|
int idx = 0;
|
|
|
|
for(i=0; i<n/gvl; i++){
|
|
v0 = VLSEV_FLOAT( &x[idx], stride_x, gvl );
|
|
v1 = VLSEV_FLOAT( &x[idx+1], stride_x, gvl );
|
|
v0 = VFABS( v0, gvl );
|
|
v1 = VFABS( v1, gvl );
|
|
|
|
MASK_T scale_mask0 = VMFGT( v0, v_scale, gvl );
|
|
MASK_T scale_mask1 = VMFGT( v1, v_scale, gvl );
|
|
if( VCPOP( scale_mask0, gvl ) + VCPOP( scale_mask1, gvl ) > 0 ){ // scale change?
|
|
// find largest element in v0 and v1
|
|
v_res = VFREDMAX( v0, v_z0, gvl );
|
|
v_res = VFREDMAX( v1, v_res, gvl );
|
|
FLOAT const largest_elt = EXTRACT_FLOAT( v_res );
|
|
|
|
v_scale = VFDIV( v_scale, largest_elt, gvl ); // scale/largest_elt
|
|
v_scale = VFMUL( v_scale, v_scale, gvl ); // (scale/largest_elt)*(scale/largest_elt)
|
|
v_ssq = VFMUL( v_scale, v_ssq, gvl ); // ssq*(scale/largest_elt)*(scale/largest_elt)
|
|
|
|
v_scale = VFMVVF_FLOAT( largest_elt, gvl ); // splated largest_elt becomes new scale
|
|
}
|
|
|
|
MASK_T nonzero_mask0 = VMFNE( v0, 0, gvl );
|
|
MASK_T nonzero_mask1 = VMFNE( v1, 0, gvl );
|
|
v0 = VFDIV_M( nonzero_mask0, v_zero, v0, v_scale, gvl );
|
|
v1 = VFDIV_M( nonzero_mask1, v_zero, v1, v_scale, gvl );
|
|
v_ssq = VFMACC_M( nonzero_mask0, v_ssq, v0, v0, gvl );
|
|
v_ssq = VFMACC_M( nonzero_mask1, v_ssq, v1, v1, gvl );
|
|
|
|
idx += inc_x * gvl * 2;
|
|
}
|
|
|
|
v_res = VFREDUSUM(v_ssq, v_z0, gvl);
|
|
FLOAT ssq = EXTRACT_FLOAT(v_res);
|
|
FLOAT scale = EXTRACT_FLOAT0_V(v_scale);
|
|
|
|
//finish any tail using scalar ops
|
|
i*=gvl;
|
|
if(i<n){
|
|
i *= inc_x*2;
|
|
n *= inc_x*2;
|
|
FLOAT temp;
|
|
do{
|
|
if ( x[i] != 0.0 ){
|
|
temp = ABS( x[i] );
|
|
if ( scale < temp ){
|
|
ssq = 1 + ssq * ( scale / temp ) * ( scale / temp );
|
|
scale = temp ;
|
|
}else{
|
|
ssq += ( temp / scale ) * ( temp / scale );
|
|
}
|
|
}
|
|
|
|
if ( x[i+1] != 0.0 ){
|
|
temp = ABS( x[i+1] );
|
|
if ( scale < temp ){
|
|
ssq = 1 + ssq * ( scale / temp ) * ( scale / temp );
|
|
scale = temp ;
|
|
}else{
|
|
ssq += ( temp / scale ) * ( temp / scale );
|
|
}
|
|
}
|
|
|
|
i += inc_x*2;
|
|
}while(i<n);
|
|
}
|
|
|
|
return(scale * sqrt(ssq));
|
|
}
|