1932 lines
86 KiB
C
1932 lines
86 KiB
C
/*
|
|
|
|
AUTOGENERATED KERNEL
|
|
Settings:
|
|
LMUL=1
|
|
M=8
|
|
M_tail_scalar_from=1
|
|
N=8
|
|
__riscv_='__riscv_'
|
|
complex=True
|
|
conjugate=False
|
|
cpu='zvl256b'
|
|
force_acc_double=False
|
|
index_type='BLASLONG'
|
|
op='gemm'
|
|
param_precision='float'
|
|
reg_width_bits=256
|
|
tail_policy=''
|
|
trace=False
|
|
|
|
Derived:
|
|
ELEN_ACC=32
|
|
ELEN_PARAM=32
|
|
LMUL_ACC=1
|
|
VFMACC='__riscv_vfmacc_vf_f32m1'
|
|
VFMUL='__riscv_vfmul_vf_f32m1'
|
|
VLEV='__riscv_vle32_v_f32m1'
|
|
VLSEV='__riscv_vlse32_v_f32m1'
|
|
VMACC_TO_ACC='__riscv_vfmacc_vf_f32m1'
|
|
VMUL_TO_ACC='__riscv_vfmul_vf_f32m1'
|
|
VSETVL='__riscv_vsetvl_e32m1'
|
|
VSEV='__riscv_vse32_v_f32m1'
|
|
VSSEV='__riscv_vsse32_v_f32m1'
|
|
acc_vector_t='vfloat32m1_t'
|
|
output='cgemm_kernel_8x8_zvl256b.c'
|
|
param_scalar_t='float'
|
|
param_vector_t='vfloat32m1_t'
|
|
|
|
*/
|
|
|
|
#include "common.h"
|
|
|
|
|
|
|
|
#if defined(NN) || defined(NT) || defined(TN) || defined(TT)
|
|
#define S0 1
|
|
#define S1 -1
|
|
#define S2 1
|
|
#define S3 1
|
|
#define VFMACC_RR __riscv_vfmsac
|
|
#define VFMACC_RI __riscv_vfmacc
|
|
#endif
|
|
#if defined(NR) || defined(NC) || defined(TR) || defined(TC)
|
|
#define S0 1
|
|
#define S1 1
|
|
#define S2 1
|
|
#define S3 -1
|
|
#define VFMACC_RR __riscv_vfmacc
|
|
#define VFMACC_RI __riscv_vfmsac
|
|
#endif
|
|
#if defined(RN) || defined(RT) || defined(CN) || defined(CT)
|
|
#define S0 1
|
|
#define S1 1
|
|
#define S2 -1
|
|
#define S3 1
|
|
#define VFMACC_RR __riscv_vfmacc
|
|
#define VFMACC_RI __riscv_vfnmsac
|
|
#endif
|
|
#if defined(RR) || defined(RC) || defined(CR) || defined(CC)
|
|
#define S0 1
|
|
#define S1 -1
|
|
#define S2 -1
|
|
#define S3 -1
|
|
#define VFMACC_RR __riscv_vfmsac
|
|
#define VFMACC_RI __riscv_vfnmacc
|
|
#endif
|
|
|
|
int CNAME(BLASLONG M, BLASLONG N, BLASLONG K, FLOAT alphar, FLOAT alphai, FLOAT* A, FLOAT* B, FLOAT* C, BLASLONG ldc)
|
|
|
|
{
|
|
BLASLONG gvl = 0;
|
|
BLASLONG m_top = 0;
|
|
BLASLONG n_top = 0;
|
|
|
|
|
|
// -- MAIN PASS
|
|
|
|
for (BLASLONG j=0; j<N/8; j+=1) {
|
|
m_top = 0;
|
|
BLASLONG gvl = __riscv_vsetvl_e32m1(8);
|
|
|
|
|
|
for (BLASLONG i=0; i<M/8; i+=1) {
|
|
BLASLONG ai=m_top*K*2;
|
|
BLASLONG bi=n_top*K*2;
|
|
float B0r = B[bi+0*2+0];
|
|
float B0i = B[bi+0*2+1];
|
|
float B1r = B[bi+1*2+0];
|
|
float B1i = B[bi+1*2+1];
|
|
float B2r = B[bi+2*2+0];
|
|
float B2i = B[bi+2*2+1];
|
|
float B3r = B[bi+3*2+0];
|
|
float B3i = B[bi+3*2+1];
|
|
float B4r = B[bi+4*2+0];
|
|
float B4i = B[bi+4*2+1];
|
|
float B5r = B[bi+5*2+0];
|
|
float B5i = B[bi+5*2+1];
|
|
float B6r = B[bi+6*2+0];
|
|
float B6i = B[bi+6*2+1];
|
|
float B7r = B[bi+7*2+0];
|
|
float B7i = B[bi+7*2+1];
|
|
bi += 8*2;
|
|
|
|
vfloat32m1_t A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 8*2;
|
|
|
|
// 2 vector regs to hold A array contents, 16 regs to hold values accumulated over k
|
|
// leaving 14 vector registers for temporaries
|
|
// performing 4 operations between reuses of temporaries
|
|
vfloat32m1_t tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
vfloat32m1_t tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
vfloat32m1_t tmp1r = __riscv_vfmul_vf_f32m1( A0i, B1i, gvl);
|
|
vfloat32m1_t tmp1i = __riscv_vfmul_vf_f32m1( A0r, B1i, gvl);
|
|
vfloat32m1_t tmp2r = __riscv_vfmul_vf_f32m1( A0i, B2i, gvl);
|
|
vfloat32m1_t tmp2i = __riscv_vfmul_vf_f32m1( A0r, B2i, gvl);
|
|
vfloat32m1_t tmp3r = __riscv_vfmul_vf_f32m1( A0i, B3i, gvl);
|
|
vfloat32m1_t tmp3i = __riscv_vfmul_vf_f32m1( A0r, B3i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
|
|
tmp2r = VFMACC_RR( tmp2r, B2r, A0r, gvl);
|
|
tmp2i = VFMACC_RI( tmp2i, B2r, A0i, gvl);
|
|
tmp3r = VFMACC_RR( tmp3r, B3r, A0r, gvl);
|
|
tmp3i = VFMACC_RI( tmp3i, B3r, A0i, gvl);
|
|
vfloat32m1_t ACC0r = tmp0r;
|
|
vfloat32m1_t ACC0i = tmp0i;
|
|
vfloat32m1_t ACC1r = tmp1r;
|
|
vfloat32m1_t ACC1i = tmp1i;
|
|
vfloat32m1_t ACC2r = tmp2r;
|
|
vfloat32m1_t ACC2i = tmp2i;
|
|
vfloat32m1_t ACC3r = tmp3r;
|
|
vfloat32m1_t ACC3i = tmp3i;
|
|
tmp0r = __riscv_vfmul_vf_f32m1( A0i, B4i, gvl);
|
|
tmp0i = __riscv_vfmul_vf_f32m1( A0r, B4i, gvl);
|
|
tmp1r = __riscv_vfmul_vf_f32m1( A0i, B5i, gvl);
|
|
tmp1i = __riscv_vfmul_vf_f32m1( A0r, B5i, gvl);
|
|
tmp2r = __riscv_vfmul_vf_f32m1( A0i, B6i, gvl);
|
|
tmp2i = __riscv_vfmul_vf_f32m1( A0r, B6i, gvl);
|
|
tmp3r = __riscv_vfmul_vf_f32m1( A0i, B7i, gvl);
|
|
tmp3i = __riscv_vfmul_vf_f32m1( A0r, B7i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B4r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B4r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B5r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B5r, A0i, gvl);
|
|
tmp2r = VFMACC_RR( tmp2r, B6r, A0r, gvl);
|
|
tmp2i = VFMACC_RI( tmp2i, B6r, A0i, gvl);
|
|
tmp3r = VFMACC_RR( tmp3r, B7r, A0r, gvl);
|
|
tmp3i = VFMACC_RI( tmp3i, B7r, A0i, gvl);
|
|
vfloat32m1_t ACC4r = tmp0r;
|
|
vfloat32m1_t ACC4i = tmp0i;
|
|
vfloat32m1_t ACC5r = tmp1r;
|
|
vfloat32m1_t ACC5i = tmp1i;
|
|
vfloat32m1_t ACC6r = tmp2r;
|
|
vfloat32m1_t ACC6i = tmp2i;
|
|
vfloat32m1_t ACC7r = tmp3r;
|
|
vfloat32m1_t ACC7i = tmp3i;
|
|
|
|
for(BLASLONG k=1; k<K; k++) {
|
|
B0r = B[bi+0*2+0];
|
|
B0i = B[bi+0*2+1];
|
|
B1r = B[bi+1*2+0];
|
|
B1i = B[bi+1*2+1];
|
|
B2r = B[bi+2*2+0];
|
|
B2i = B[bi+2*2+1];
|
|
B3r = B[bi+3*2+0];
|
|
B3i = B[bi+3*2+1];
|
|
B4r = B[bi+4*2+0];
|
|
B4i = B[bi+4*2+1];
|
|
B5r = B[bi+5*2+0];
|
|
B5i = B[bi+5*2+1];
|
|
B6r = B[bi+6*2+0];
|
|
B6i = B[bi+6*2+1];
|
|
B7r = B[bi+7*2+0];
|
|
B7i = B[bi+7*2+1];
|
|
bi += 8*2;
|
|
|
|
A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 8*2;
|
|
|
|
tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
tmp1r = __riscv_vfmul_vf_f32m1( A0i, B1i, gvl);
|
|
tmp1i = __riscv_vfmul_vf_f32m1( A0r, B1i, gvl);
|
|
tmp2r = __riscv_vfmul_vf_f32m1( A0i, B2i, gvl);
|
|
tmp2i = __riscv_vfmul_vf_f32m1( A0r, B2i, gvl);
|
|
tmp3r = __riscv_vfmul_vf_f32m1( A0i, B3i, gvl);
|
|
tmp3i = __riscv_vfmul_vf_f32m1( A0r, B3i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
|
|
tmp2r = VFMACC_RR( tmp2r, B2r, A0r, gvl);
|
|
tmp2i = VFMACC_RI( tmp2i, B2r, A0i, gvl);
|
|
tmp3r = VFMACC_RR( tmp3r, B3r, A0r, gvl);
|
|
tmp3i = VFMACC_RI( tmp3i, B3r, A0i, gvl);
|
|
ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
|
|
ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
|
|
ACC1r = __riscv_vfadd( ACC1r, tmp1r, gvl);
|
|
ACC1i = __riscv_vfadd( ACC1i, tmp1i, gvl);
|
|
ACC2r = __riscv_vfadd( ACC2r, tmp2r, gvl);
|
|
ACC2i = __riscv_vfadd( ACC2i, tmp2i, gvl);
|
|
ACC3r = __riscv_vfadd( ACC3r, tmp3r, gvl);
|
|
ACC3i = __riscv_vfadd( ACC3i, tmp3i, gvl);
|
|
tmp0r = __riscv_vfmul_vf_f32m1( A0i, B4i, gvl);
|
|
tmp0i = __riscv_vfmul_vf_f32m1( A0r, B4i, gvl);
|
|
tmp1r = __riscv_vfmul_vf_f32m1( A0i, B5i, gvl);
|
|
tmp1i = __riscv_vfmul_vf_f32m1( A0r, B5i, gvl);
|
|
tmp2r = __riscv_vfmul_vf_f32m1( A0i, B6i, gvl);
|
|
tmp2i = __riscv_vfmul_vf_f32m1( A0r, B6i, gvl);
|
|
tmp3r = __riscv_vfmul_vf_f32m1( A0i, B7i, gvl);
|
|
tmp3i = __riscv_vfmul_vf_f32m1( A0r, B7i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B4r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B4r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B5r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B5r, A0i, gvl);
|
|
tmp2r = VFMACC_RR( tmp2r, B6r, A0r, gvl);
|
|
tmp2i = VFMACC_RI( tmp2i, B6r, A0i, gvl);
|
|
tmp3r = VFMACC_RR( tmp3r, B7r, A0r, gvl);
|
|
tmp3i = VFMACC_RI( tmp3i, B7r, A0i, gvl);
|
|
ACC4r = __riscv_vfadd( ACC4r, tmp0r, gvl);
|
|
ACC4i = __riscv_vfadd( ACC4i, tmp0i, gvl);
|
|
ACC5r = __riscv_vfadd( ACC5r, tmp1r, gvl);
|
|
ACC5i = __riscv_vfadd( ACC5i, tmp1i, gvl);
|
|
ACC6r = __riscv_vfadd( ACC6r, tmp2r, gvl);
|
|
ACC6i = __riscv_vfadd( ACC6i, tmp2i, gvl);
|
|
ACC7r = __riscv_vfadd( ACC7r, tmp3r, gvl);
|
|
ACC7i = __riscv_vfadd( ACC7i, tmp3i, gvl);
|
|
}
|
|
|
|
|
|
BLASLONG ci=n_top*ldc+m_top;
|
|
|
|
vfloat32m1_t C0r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C0i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C1r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C1i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C2r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C2i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C3r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C3i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C4r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C4i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C5r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C5i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C6r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C6i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C7r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C7i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
|
|
C0r = __riscv_vfmacc( C0r, alphar, ACC0r, gvl );
|
|
C0i = __riscv_vfmacc( C0i, alphar, ACC0i, gvl );
|
|
C1r = __riscv_vfmacc( C1r, alphar, ACC1r, gvl );
|
|
C1i = __riscv_vfmacc( C1i, alphar, ACC1i, gvl );
|
|
C2r = __riscv_vfmacc( C2r, alphar, ACC2r, gvl );
|
|
C2i = __riscv_vfmacc( C2i, alphar, ACC2i, gvl );
|
|
C3r = __riscv_vfmacc( C3r, alphar, ACC3r, gvl );
|
|
C3i = __riscv_vfmacc( C3i, alphar, ACC3i, gvl );
|
|
C4r = __riscv_vfmacc( C4r, alphar, ACC4r, gvl );
|
|
C4i = __riscv_vfmacc( C4i, alphar, ACC4i, gvl );
|
|
C5r = __riscv_vfmacc( C5r, alphar, ACC5r, gvl );
|
|
C5i = __riscv_vfmacc( C5i, alphar, ACC5i, gvl );
|
|
C6r = __riscv_vfmacc( C6r, alphar, ACC6r, gvl );
|
|
C6i = __riscv_vfmacc( C6i, alphar, ACC6i, gvl );
|
|
C7r = __riscv_vfmacc( C7r, alphar, ACC7r, gvl );
|
|
C7i = __riscv_vfmacc( C7i, alphar, ACC7i, gvl );
|
|
C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
|
|
C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
|
|
C1r = __riscv_vfnmsac( C1r, alphai, ACC1i, gvl );
|
|
C1i = __riscv_vfmacc ( C1i, alphai, ACC1r, gvl );
|
|
C2r = __riscv_vfnmsac( C2r, alphai, ACC2i, gvl );
|
|
C2i = __riscv_vfmacc ( C2i, alphai, ACC2r, gvl );
|
|
C3r = __riscv_vfnmsac( C3r, alphai, ACC3i, gvl );
|
|
C3i = __riscv_vfmacc ( C3i, alphai, ACC3r, gvl );
|
|
C4r = __riscv_vfnmsac( C4r, alphai, ACC4i, gvl );
|
|
C4i = __riscv_vfmacc ( C4i, alphai, ACC4r, gvl );
|
|
C5r = __riscv_vfnmsac( C5r, alphai, ACC5i, gvl );
|
|
C5i = __riscv_vfmacc ( C5i, alphai, ACC5r, gvl );
|
|
C6r = __riscv_vfnmsac( C6r, alphai, ACC6i, gvl );
|
|
C6i = __riscv_vfmacc ( C6i, alphai, ACC6r, gvl );
|
|
C7r = __riscv_vfnmsac( C7r, alphai, ACC7i, gvl );
|
|
C7i = __riscv_vfmacc ( C7i, alphai, ACC7r, gvl );
|
|
|
|
ci=n_top*ldc+m_top;
|
|
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C1r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C1i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C2r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C2i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C3r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C3i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C4r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C4i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C5r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C5i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C6r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C6i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C7r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C7i, gvl);
|
|
|
|
m_top += 8;
|
|
}
|
|
|
|
|
|
|
|
// -- tails for main pass
|
|
|
|
if( M & 4 ) {
|
|
gvl = __riscv_vsetvl_e32m1(4);
|
|
|
|
BLASLONG ai=m_top*K*2;
|
|
BLASLONG bi=n_top*K*2;
|
|
float B0r = B[bi+0*2+0];
|
|
float B0i = B[bi+0*2+1];
|
|
float B1r = B[bi+1*2+0];
|
|
float B1i = B[bi+1*2+1];
|
|
float B2r = B[bi+2*2+0];
|
|
float B2i = B[bi+2*2+1];
|
|
float B3r = B[bi+3*2+0];
|
|
float B3i = B[bi+3*2+1];
|
|
float B4r = B[bi+4*2+0];
|
|
float B4i = B[bi+4*2+1];
|
|
float B5r = B[bi+5*2+0];
|
|
float B5i = B[bi+5*2+1];
|
|
float B6r = B[bi+6*2+0];
|
|
float B6i = B[bi+6*2+1];
|
|
float B7r = B[bi+7*2+0];
|
|
float B7i = B[bi+7*2+1];
|
|
bi += 8*2;
|
|
|
|
vfloat32m1_t A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 4*2;
|
|
|
|
// 2 vector regs to hold A array contents, 16 regs to hold values accumulated over k
|
|
// leaving 14 vector registers for temporaries
|
|
// performing 4 operations between reuses of temporaries
|
|
vfloat32m1_t tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
vfloat32m1_t tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
vfloat32m1_t tmp1r = __riscv_vfmul_vf_f32m1( A0i, B1i, gvl);
|
|
vfloat32m1_t tmp1i = __riscv_vfmul_vf_f32m1( A0r, B1i, gvl);
|
|
vfloat32m1_t tmp2r = __riscv_vfmul_vf_f32m1( A0i, B2i, gvl);
|
|
vfloat32m1_t tmp2i = __riscv_vfmul_vf_f32m1( A0r, B2i, gvl);
|
|
vfloat32m1_t tmp3r = __riscv_vfmul_vf_f32m1( A0i, B3i, gvl);
|
|
vfloat32m1_t tmp3i = __riscv_vfmul_vf_f32m1( A0r, B3i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
|
|
tmp2r = VFMACC_RR( tmp2r, B2r, A0r, gvl);
|
|
tmp2i = VFMACC_RI( tmp2i, B2r, A0i, gvl);
|
|
tmp3r = VFMACC_RR( tmp3r, B3r, A0r, gvl);
|
|
tmp3i = VFMACC_RI( tmp3i, B3r, A0i, gvl);
|
|
vfloat32m1_t ACC0r = tmp0r;
|
|
vfloat32m1_t ACC0i = tmp0i;
|
|
vfloat32m1_t ACC1r = tmp1r;
|
|
vfloat32m1_t ACC1i = tmp1i;
|
|
vfloat32m1_t ACC2r = tmp2r;
|
|
vfloat32m1_t ACC2i = tmp2i;
|
|
vfloat32m1_t ACC3r = tmp3r;
|
|
vfloat32m1_t ACC3i = tmp3i;
|
|
tmp0r = __riscv_vfmul_vf_f32m1( A0i, B4i, gvl);
|
|
tmp0i = __riscv_vfmul_vf_f32m1( A0r, B4i, gvl);
|
|
tmp1r = __riscv_vfmul_vf_f32m1( A0i, B5i, gvl);
|
|
tmp1i = __riscv_vfmul_vf_f32m1( A0r, B5i, gvl);
|
|
tmp2r = __riscv_vfmul_vf_f32m1( A0i, B6i, gvl);
|
|
tmp2i = __riscv_vfmul_vf_f32m1( A0r, B6i, gvl);
|
|
tmp3r = __riscv_vfmul_vf_f32m1( A0i, B7i, gvl);
|
|
tmp3i = __riscv_vfmul_vf_f32m1( A0r, B7i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B4r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B4r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B5r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B5r, A0i, gvl);
|
|
tmp2r = VFMACC_RR( tmp2r, B6r, A0r, gvl);
|
|
tmp2i = VFMACC_RI( tmp2i, B6r, A0i, gvl);
|
|
tmp3r = VFMACC_RR( tmp3r, B7r, A0r, gvl);
|
|
tmp3i = VFMACC_RI( tmp3i, B7r, A0i, gvl);
|
|
vfloat32m1_t ACC4r = tmp0r;
|
|
vfloat32m1_t ACC4i = tmp0i;
|
|
vfloat32m1_t ACC5r = tmp1r;
|
|
vfloat32m1_t ACC5i = tmp1i;
|
|
vfloat32m1_t ACC6r = tmp2r;
|
|
vfloat32m1_t ACC6i = tmp2i;
|
|
vfloat32m1_t ACC7r = tmp3r;
|
|
vfloat32m1_t ACC7i = tmp3i;
|
|
|
|
for(BLASLONG k=1; k<K; k++) {
|
|
B0r = B[bi+0*2+0];
|
|
B0i = B[bi+0*2+1];
|
|
B1r = B[bi+1*2+0];
|
|
B1i = B[bi+1*2+1];
|
|
B2r = B[bi+2*2+0];
|
|
B2i = B[bi+2*2+1];
|
|
B3r = B[bi+3*2+0];
|
|
B3i = B[bi+3*2+1];
|
|
B4r = B[bi+4*2+0];
|
|
B4i = B[bi+4*2+1];
|
|
B5r = B[bi+5*2+0];
|
|
B5i = B[bi+5*2+1];
|
|
B6r = B[bi+6*2+0];
|
|
B6i = B[bi+6*2+1];
|
|
B7r = B[bi+7*2+0];
|
|
B7i = B[bi+7*2+1];
|
|
bi += 8*2;
|
|
|
|
A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 4*2;
|
|
|
|
tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
tmp1r = __riscv_vfmul_vf_f32m1( A0i, B1i, gvl);
|
|
tmp1i = __riscv_vfmul_vf_f32m1( A0r, B1i, gvl);
|
|
tmp2r = __riscv_vfmul_vf_f32m1( A0i, B2i, gvl);
|
|
tmp2i = __riscv_vfmul_vf_f32m1( A0r, B2i, gvl);
|
|
tmp3r = __riscv_vfmul_vf_f32m1( A0i, B3i, gvl);
|
|
tmp3i = __riscv_vfmul_vf_f32m1( A0r, B3i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
|
|
tmp2r = VFMACC_RR( tmp2r, B2r, A0r, gvl);
|
|
tmp2i = VFMACC_RI( tmp2i, B2r, A0i, gvl);
|
|
tmp3r = VFMACC_RR( tmp3r, B3r, A0r, gvl);
|
|
tmp3i = VFMACC_RI( tmp3i, B3r, A0i, gvl);
|
|
ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
|
|
ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
|
|
ACC1r = __riscv_vfadd( ACC1r, tmp1r, gvl);
|
|
ACC1i = __riscv_vfadd( ACC1i, tmp1i, gvl);
|
|
ACC2r = __riscv_vfadd( ACC2r, tmp2r, gvl);
|
|
ACC2i = __riscv_vfadd( ACC2i, tmp2i, gvl);
|
|
ACC3r = __riscv_vfadd( ACC3r, tmp3r, gvl);
|
|
ACC3i = __riscv_vfadd( ACC3i, tmp3i, gvl);
|
|
tmp0r = __riscv_vfmul_vf_f32m1( A0i, B4i, gvl);
|
|
tmp0i = __riscv_vfmul_vf_f32m1( A0r, B4i, gvl);
|
|
tmp1r = __riscv_vfmul_vf_f32m1( A0i, B5i, gvl);
|
|
tmp1i = __riscv_vfmul_vf_f32m1( A0r, B5i, gvl);
|
|
tmp2r = __riscv_vfmul_vf_f32m1( A0i, B6i, gvl);
|
|
tmp2i = __riscv_vfmul_vf_f32m1( A0r, B6i, gvl);
|
|
tmp3r = __riscv_vfmul_vf_f32m1( A0i, B7i, gvl);
|
|
tmp3i = __riscv_vfmul_vf_f32m1( A0r, B7i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B4r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B4r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B5r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B5r, A0i, gvl);
|
|
tmp2r = VFMACC_RR( tmp2r, B6r, A0r, gvl);
|
|
tmp2i = VFMACC_RI( tmp2i, B6r, A0i, gvl);
|
|
tmp3r = VFMACC_RR( tmp3r, B7r, A0r, gvl);
|
|
tmp3i = VFMACC_RI( tmp3i, B7r, A0i, gvl);
|
|
ACC4r = __riscv_vfadd( ACC4r, tmp0r, gvl);
|
|
ACC4i = __riscv_vfadd( ACC4i, tmp0i, gvl);
|
|
ACC5r = __riscv_vfadd( ACC5r, tmp1r, gvl);
|
|
ACC5i = __riscv_vfadd( ACC5i, tmp1i, gvl);
|
|
ACC6r = __riscv_vfadd( ACC6r, tmp2r, gvl);
|
|
ACC6i = __riscv_vfadd( ACC6i, tmp2i, gvl);
|
|
ACC7r = __riscv_vfadd( ACC7r, tmp3r, gvl);
|
|
ACC7i = __riscv_vfadd( ACC7i, tmp3i, gvl);
|
|
}
|
|
|
|
|
|
BLASLONG ci=n_top*ldc+m_top;
|
|
|
|
vfloat32m1_t C0r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C0i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C1r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C1i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C2r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C2i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C3r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C3i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C4r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C4i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C5r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C5i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C6r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C6i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C7r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C7i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
|
|
C0r = __riscv_vfmacc( C0r, alphar, ACC0r, gvl );
|
|
C0i = __riscv_vfmacc( C0i, alphar, ACC0i, gvl );
|
|
C1r = __riscv_vfmacc( C1r, alphar, ACC1r, gvl );
|
|
C1i = __riscv_vfmacc( C1i, alphar, ACC1i, gvl );
|
|
C2r = __riscv_vfmacc( C2r, alphar, ACC2r, gvl );
|
|
C2i = __riscv_vfmacc( C2i, alphar, ACC2i, gvl );
|
|
C3r = __riscv_vfmacc( C3r, alphar, ACC3r, gvl );
|
|
C3i = __riscv_vfmacc( C3i, alphar, ACC3i, gvl );
|
|
C4r = __riscv_vfmacc( C4r, alphar, ACC4r, gvl );
|
|
C4i = __riscv_vfmacc( C4i, alphar, ACC4i, gvl );
|
|
C5r = __riscv_vfmacc( C5r, alphar, ACC5r, gvl );
|
|
C5i = __riscv_vfmacc( C5i, alphar, ACC5i, gvl );
|
|
C6r = __riscv_vfmacc( C6r, alphar, ACC6r, gvl );
|
|
C6i = __riscv_vfmacc( C6i, alphar, ACC6i, gvl );
|
|
C7r = __riscv_vfmacc( C7r, alphar, ACC7r, gvl );
|
|
C7i = __riscv_vfmacc( C7i, alphar, ACC7i, gvl );
|
|
C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
|
|
C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
|
|
C1r = __riscv_vfnmsac( C1r, alphai, ACC1i, gvl );
|
|
C1i = __riscv_vfmacc ( C1i, alphai, ACC1r, gvl );
|
|
C2r = __riscv_vfnmsac( C2r, alphai, ACC2i, gvl );
|
|
C2i = __riscv_vfmacc ( C2i, alphai, ACC2r, gvl );
|
|
C3r = __riscv_vfnmsac( C3r, alphai, ACC3i, gvl );
|
|
C3i = __riscv_vfmacc ( C3i, alphai, ACC3r, gvl );
|
|
C4r = __riscv_vfnmsac( C4r, alphai, ACC4i, gvl );
|
|
C4i = __riscv_vfmacc ( C4i, alphai, ACC4r, gvl );
|
|
C5r = __riscv_vfnmsac( C5r, alphai, ACC5i, gvl );
|
|
C5i = __riscv_vfmacc ( C5i, alphai, ACC5r, gvl );
|
|
C6r = __riscv_vfnmsac( C6r, alphai, ACC6i, gvl );
|
|
C6i = __riscv_vfmacc ( C6i, alphai, ACC6r, gvl );
|
|
C7r = __riscv_vfnmsac( C7r, alphai, ACC7i, gvl );
|
|
C7i = __riscv_vfmacc ( C7i, alphai, ACC7r, gvl );
|
|
|
|
ci=n_top*ldc+m_top;
|
|
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C1r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C1i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C2r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C2i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C3r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C3i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C4r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C4i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C5r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C5i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C6r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C6i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C7r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C7i, gvl);
|
|
|
|
m_top += 4;
|
|
}
|
|
|
|
|
|
if( M & 2 ) {
|
|
gvl = __riscv_vsetvl_e32m1(2);
|
|
|
|
BLASLONG ai=m_top*K*2;
|
|
BLASLONG bi=n_top*K*2;
|
|
float B0r = B[bi+0*2+0];
|
|
float B0i = B[bi+0*2+1];
|
|
float B1r = B[bi+1*2+0];
|
|
float B1i = B[bi+1*2+1];
|
|
float B2r = B[bi+2*2+0];
|
|
float B2i = B[bi+2*2+1];
|
|
float B3r = B[bi+3*2+0];
|
|
float B3i = B[bi+3*2+1];
|
|
float B4r = B[bi+4*2+0];
|
|
float B4i = B[bi+4*2+1];
|
|
float B5r = B[bi+5*2+0];
|
|
float B5i = B[bi+5*2+1];
|
|
float B6r = B[bi+6*2+0];
|
|
float B6i = B[bi+6*2+1];
|
|
float B7r = B[bi+7*2+0];
|
|
float B7i = B[bi+7*2+1];
|
|
bi += 8*2;
|
|
|
|
vfloat32m1_t A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 2*2;
|
|
|
|
// 2 vector regs to hold A array contents, 16 regs to hold values accumulated over k
|
|
// leaving 14 vector registers for temporaries
|
|
// performing 4 operations between reuses of temporaries
|
|
vfloat32m1_t tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
vfloat32m1_t tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
vfloat32m1_t tmp1r = __riscv_vfmul_vf_f32m1( A0i, B1i, gvl);
|
|
vfloat32m1_t tmp1i = __riscv_vfmul_vf_f32m1( A0r, B1i, gvl);
|
|
vfloat32m1_t tmp2r = __riscv_vfmul_vf_f32m1( A0i, B2i, gvl);
|
|
vfloat32m1_t tmp2i = __riscv_vfmul_vf_f32m1( A0r, B2i, gvl);
|
|
vfloat32m1_t tmp3r = __riscv_vfmul_vf_f32m1( A0i, B3i, gvl);
|
|
vfloat32m1_t tmp3i = __riscv_vfmul_vf_f32m1( A0r, B3i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
|
|
tmp2r = VFMACC_RR( tmp2r, B2r, A0r, gvl);
|
|
tmp2i = VFMACC_RI( tmp2i, B2r, A0i, gvl);
|
|
tmp3r = VFMACC_RR( tmp3r, B3r, A0r, gvl);
|
|
tmp3i = VFMACC_RI( tmp3i, B3r, A0i, gvl);
|
|
vfloat32m1_t ACC0r = tmp0r;
|
|
vfloat32m1_t ACC0i = tmp0i;
|
|
vfloat32m1_t ACC1r = tmp1r;
|
|
vfloat32m1_t ACC1i = tmp1i;
|
|
vfloat32m1_t ACC2r = tmp2r;
|
|
vfloat32m1_t ACC2i = tmp2i;
|
|
vfloat32m1_t ACC3r = tmp3r;
|
|
vfloat32m1_t ACC3i = tmp3i;
|
|
tmp0r = __riscv_vfmul_vf_f32m1( A0i, B4i, gvl);
|
|
tmp0i = __riscv_vfmul_vf_f32m1( A0r, B4i, gvl);
|
|
tmp1r = __riscv_vfmul_vf_f32m1( A0i, B5i, gvl);
|
|
tmp1i = __riscv_vfmul_vf_f32m1( A0r, B5i, gvl);
|
|
tmp2r = __riscv_vfmul_vf_f32m1( A0i, B6i, gvl);
|
|
tmp2i = __riscv_vfmul_vf_f32m1( A0r, B6i, gvl);
|
|
tmp3r = __riscv_vfmul_vf_f32m1( A0i, B7i, gvl);
|
|
tmp3i = __riscv_vfmul_vf_f32m1( A0r, B7i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B4r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B4r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B5r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B5r, A0i, gvl);
|
|
tmp2r = VFMACC_RR( tmp2r, B6r, A0r, gvl);
|
|
tmp2i = VFMACC_RI( tmp2i, B6r, A0i, gvl);
|
|
tmp3r = VFMACC_RR( tmp3r, B7r, A0r, gvl);
|
|
tmp3i = VFMACC_RI( tmp3i, B7r, A0i, gvl);
|
|
vfloat32m1_t ACC4r = tmp0r;
|
|
vfloat32m1_t ACC4i = tmp0i;
|
|
vfloat32m1_t ACC5r = tmp1r;
|
|
vfloat32m1_t ACC5i = tmp1i;
|
|
vfloat32m1_t ACC6r = tmp2r;
|
|
vfloat32m1_t ACC6i = tmp2i;
|
|
vfloat32m1_t ACC7r = tmp3r;
|
|
vfloat32m1_t ACC7i = tmp3i;
|
|
|
|
for(BLASLONG k=1; k<K; k++) {
|
|
B0r = B[bi+0*2+0];
|
|
B0i = B[bi+0*2+1];
|
|
B1r = B[bi+1*2+0];
|
|
B1i = B[bi+1*2+1];
|
|
B2r = B[bi+2*2+0];
|
|
B2i = B[bi+2*2+1];
|
|
B3r = B[bi+3*2+0];
|
|
B3i = B[bi+3*2+1];
|
|
B4r = B[bi+4*2+0];
|
|
B4i = B[bi+4*2+1];
|
|
B5r = B[bi+5*2+0];
|
|
B5i = B[bi+5*2+1];
|
|
B6r = B[bi+6*2+0];
|
|
B6i = B[bi+6*2+1];
|
|
B7r = B[bi+7*2+0];
|
|
B7i = B[bi+7*2+1];
|
|
bi += 8*2;
|
|
|
|
A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 2*2;
|
|
|
|
tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
tmp1r = __riscv_vfmul_vf_f32m1( A0i, B1i, gvl);
|
|
tmp1i = __riscv_vfmul_vf_f32m1( A0r, B1i, gvl);
|
|
tmp2r = __riscv_vfmul_vf_f32m1( A0i, B2i, gvl);
|
|
tmp2i = __riscv_vfmul_vf_f32m1( A0r, B2i, gvl);
|
|
tmp3r = __riscv_vfmul_vf_f32m1( A0i, B3i, gvl);
|
|
tmp3i = __riscv_vfmul_vf_f32m1( A0r, B3i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
|
|
tmp2r = VFMACC_RR( tmp2r, B2r, A0r, gvl);
|
|
tmp2i = VFMACC_RI( tmp2i, B2r, A0i, gvl);
|
|
tmp3r = VFMACC_RR( tmp3r, B3r, A0r, gvl);
|
|
tmp3i = VFMACC_RI( tmp3i, B3r, A0i, gvl);
|
|
ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
|
|
ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
|
|
ACC1r = __riscv_vfadd( ACC1r, tmp1r, gvl);
|
|
ACC1i = __riscv_vfadd( ACC1i, tmp1i, gvl);
|
|
ACC2r = __riscv_vfadd( ACC2r, tmp2r, gvl);
|
|
ACC2i = __riscv_vfadd( ACC2i, tmp2i, gvl);
|
|
ACC3r = __riscv_vfadd( ACC3r, tmp3r, gvl);
|
|
ACC3i = __riscv_vfadd( ACC3i, tmp3i, gvl);
|
|
tmp0r = __riscv_vfmul_vf_f32m1( A0i, B4i, gvl);
|
|
tmp0i = __riscv_vfmul_vf_f32m1( A0r, B4i, gvl);
|
|
tmp1r = __riscv_vfmul_vf_f32m1( A0i, B5i, gvl);
|
|
tmp1i = __riscv_vfmul_vf_f32m1( A0r, B5i, gvl);
|
|
tmp2r = __riscv_vfmul_vf_f32m1( A0i, B6i, gvl);
|
|
tmp2i = __riscv_vfmul_vf_f32m1( A0r, B6i, gvl);
|
|
tmp3r = __riscv_vfmul_vf_f32m1( A0i, B7i, gvl);
|
|
tmp3i = __riscv_vfmul_vf_f32m1( A0r, B7i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B4r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B4r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B5r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B5r, A0i, gvl);
|
|
tmp2r = VFMACC_RR( tmp2r, B6r, A0r, gvl);
|
|
tmp2i = VFMACC_RI( tmp2i, B6r, A0i, gvl);
|
|
tmp3r = VFMACC_RR( tmp3r, B7r, A0r, gvl);
|
|
tmp3i = VFMACC_RI( tmp3i, B7r, A0i, gvl);
|
|
ACC4r = __riscv_vfadd( ACC4r, tmp0r, gvl);
|
|
ACC4i = __riscv_vfadd( ACC4i, tmp0i, gvl);
|
|
ACC5r = __riscv_vfadd( ACC5r, tmp1r, gvl);
|
|
ACC5i = __riscv_vfadd( ACC5i, tmp1i, gvl);
|
|
ACC6r = __riscv_vfadd( ACC6r, tmp2r, gvl);
|
|
ACC6i = __riscv_vfadd( ACC6i, tmp2i, gvl);
|
|
ACC7r = __riscv_vfadd( ACC7r, tmp3r, gvl);
|
|
ACC7i = __riscv_vfadd( ACC7i, tmp3i, gvl);
|
|
}
|
|
|
|
|
|
BLASLONG ci=n_top*ldc+m_top;
|
|
|
|
vfloat32m1_t C0r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C0i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C1r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C1i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C2r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C2i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C3r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C3i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C4r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C4i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C5r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C5i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C6r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C6i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C7r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C7i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
|
|
C0r = __riscv_vfmacc( C0r, alphar, ACC0r, gvl );
|
|
C0i = __riscv_vfmacc( C0i, alphar, ACC0i, gvl );
|
|
C1r = __riscv_vfmacc( C1r, alphar, ACC1r, gvl );
|
|
C1i = __riscv_vfmacc( C1i, alphar, ACC1i, gvl );
|
|
C2r = __riscv_vfmacc( C2r, alphar, ACC2r, gvl );
|
|
C2i = __riscv_vfmacc( C2i, alphar, ACC2i, gvl );
|
|
C3r = __riscv_vfmacc( C3r, alphar, ACC3r, gvl );
|
|
C3i = __riscv_vfmacc( C3i, alphar, ACC3i, gvl );
|
|
C4r = __riscv_vfmacc( C4r, alphar, ACC4r, gvl );
|
|
C4i = __riscv_vfmacc( C4i, alphar, ACC4i, gvl );
|
|
C5r = __riscv_vfmacc( C5r, alphar, ACC5r, gvl );
|
|
C5i = __riscv_vfmacc( C5i, alphar, ACC5i, gvl );
|
|
C6r = __riscv_vfmacc( C6r, alphar, ACC6r, gvl );
|
|
C6i = __riscv_vfmacc( C6i, alphar, ACC6i, gvl );
|
|
C7r = __riscv_vfmacc( C7r, alphar, ACC7r, gvl );
|
|
C7i = __riscv_vfmacc( C7i, alphar, ACC7i, gvl );
|
|
C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
|
|
C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
|
|
C1r = __riscv_vfnmsac( C1r, alphai, ACC1i, gvl );
|
|
C1i = __riscv_vfmacc ( C1i, alphai, ACC1r, gvl );
|
|
C2r = __riscv_vfnmsac( C2r, alphai, ACC2i, gvl );
|
|
C2i = __riscv_vfmacc ( C2i, alphai, ACC2r, gvl );
|
|
C3r = __riscv_vfnmsac( C3r, alphai, ACC3i, gvl );
|
|
C3i = __riscv_vfmacc ( C3i, alphai, ACC3r, gvl );
|
|
C4r = __riscv_vfnmsac( C4r, alphai, ACC4i, gvl );
|
|
C4i = __riscv_vfmacc ( C4i, alphai, ACC4r, gvl );
|
|
C5r = __riscv_vfnmsac( C5r, alphai, ACC5i, gvl );
|
|
C5i = __riscv_vfmacc ( C5i, alphai, ACC5r, gvl );
|
|
C6r = __riscv_vfnmsac( C6r, alphai, ACC6i, gvl );
|
|
C6i = __riscv_vfmacc ( C6i, alphai, ACC6r, gvl );
|
|
C7r = __riscv_vfnmsac( C7r, alphai, ACC7i, gvl );
|
|
C7i = __riscv_vfmacc ( C7i, alphai, ACC7r, gvl );
|
|
|
|
ci=n_top*ldc+m_top;
|
|
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C1r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C1i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C2r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C2i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C3r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C3i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C4r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C4i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C5r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C5i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C6r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C6i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C7r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C7i, gvl);
|
|
|
|
m_top += 2;
|
|
}
|
|
|
|
|
|
if( M & 1 ) {
|
|
float result0 = 0;
|
|
float result1 = 0;
|
|
float result2 = 0;
|
|
float result3 = 0;
|
|
float result4 = 0;
|
|
float result5 = 0;
|
|
float result6 = 0;
|
|
float result7 = 0;
|
|
float result8 = 0;
|
|
float result9 = 0;
|
|
float result10 = 0;
|
|
float result11 = 0;
|
|
float result12 = 0;
|
|
float result13 = 0;
|
|
float result14 = 0;
|
|
float result15 = 0;
|
|
BLASLONG ai=m_top*K*2;
|
|
BLASLONG bi=n_top*K*2;
|
|
|
|
for(BLASLONG k=0; k<K; k++) {
|
|
result0+=S0*A[ai+0+0]*B[bi+0+0] + S1*A[ai+0+1]*B[bi+0+1];
|
|
result1+=S2*A[ai+0+1]*B[bi+0+0] + S3*A[ai+0+0]*B[bi+0+1];
|
|
result2+=S0*A[ai+0+0]*B[bi+2+0] + S1*A[ai+0+1]*B[bi+2+1];
|
|
result3+=S2*A[ai+0+1]*B[bi+2+0] + S3*A[ai+0+0]*B[bi+2+1];
|
|
result4+=S0*A[ai+0+0]*B[bi+4+0] + S1*A[ai+0+1]*B[bi+4+1];
|
|
result5+=S2*A[ai+0+1]*B[bi+4+0] + S3*A[ai+0+0]*B[bi+4+1];
|
|
result6+=S0*A[ai+0+0]*B[bi+6+0] + S1*A[ai+0+1]*B[bi+6+1];
|
|
result7+=S2*A[ai+0+1]*B[bi+6+0] + S3*A[ai+0+0]*B[bi+6+1];
|
|
result8+=S0*A[ai+0+0]*B[bi+8+0] + S1*A[ai+0+1]*B[bi+8+1];
|
|
result9+=S2*A[ai+0+1]*B[bi+8+0] + S3*A[ai+0+0]*B[bi+8+1];
|
|
result10+=S0*A[ai+0+0]*B[bi+10+0] + S1*A[ai+0+1]*B[bi+10+1];
|
|
result11+=S2*A[ai+0+1]*B[bi+10+0] + S3*A[ai+0+0]*B[bi+10+1];
|
|
result12+=S0*A[ai+0+0]*B[bi+12+0] + S1*A[ai+0+1]*B[bi+12+1];
|
|
result13+=S2*A[ai+0+1]*B[bi+12+0] + S3*A[ai+0+0]*B[bi+12+1];
|
|
result14+=S0*A[ai+0+0]*B[bi+14+0] + S1*A[ai+0+1]*B[bi+14+1];
|
|
result15+=S2*A[ai+0+1]*B[bi+14+0] + S3*A[ai+0+0]*B[bi+14+1];
|
|
ai+=1*2;
|
|
bi+=8*2;
|
|
}
|
|
|
|
BLASLONG ci=n_top*ldc+m_top;
|
|
float Cr, Ci;
|
|
Cr = C[(ci+0*ldc+0)*2+0];
|
|
Ci = C[(ci+0*ldc+0)*2+1];
|
|
Cr += result0*alphar;
|
|
Ci += result1*alphar;
|
|
Cr -= result1*alphai;
|
|
Ci += result0*alphai;
|
|
C[(ci+0*ldc+0)*2+0] = Cr;
|
|
C[(ci+0*ldc+0)*2+1] = Ci;
|
|
Cr = C[(ci+1*ldc+0)*2+0];
|
|
Ci = C[(ci+1*ldc+0)*2+1];
|
|
Cr += result2*alphar;
|
|
Ci += result3*alphar;
|
|
Cr -= result3*alphai;
|
|
Ci += result2*alphai;
|
|
C[(ci+1*ldc+0)*2+0] = Cr;
|
|
C[(ci+1*ldc+0)*2+1] = Ci;
|
|
Cr = C[(ci+2*ldc+0)*2+0];
|
|
Ci = C[(ci+2*ldc+0)*2+1];
|
|
Cr += result4*alphar;
|
|
Ci += result5*alphar;
|
|
Cr -= result5*alphai;
|
|
Ci += result4*alphai;
|
|
C[(ci+2*ldc+0)*2+0] = Cr;
|
|
C[(ci+2*ldc+0)*2+1] = Ci;
|
|
Cr = C[(ci+3*ldc+0)*2+0];
|
|
Ci = C[(ci+3*ldc+0)*2+1];
|
|
Cr += result6*alphar;
|
|
Ci += result7*alphar;
|
|
Cr -= result7*alphai;
|
|
Ci += result6*alphai;
|
|
C[(ci+3*ldc+0)*2+0] = Cr;
|
|
C[(ci+3*ldc+0)*2+1] = Ci;
|
|
Cr = C[(ci+4*ldc+0)*2+0];
|
|
Ci = C[(ci+4*ldc+0)*2+1];
|
|
Cr += result8*alphar;
|
|
Ci += result9*alphar;
|
|
Cr -= result9*alphai;
|
|
Ci += result8*alphai;
|
|
C[(ci+4*ldc+0)*2+0] = Cr;
|
|
C[(ci+4*ldc+0)*2+1] = Ci;
|
|
Cr = C[(ci+5*ldc+0)*2+0];
|
|
Ci = C[(ci+5*ldc+0)*2+1];
|
|
Cr += result10*alphar;
|
|
Ci += result11*alphar;
|
|
Cr -= result11*alphai;
|
|
Ci += result10*alphai;
|
|
C[(ci+5*ldc+0)*2+0] = Cr;
|
|
C[(ci+5*ldc+0)*2+1] = Ci;
|
|
Cr = C[(ci+6*ldc+0)*2+0];
|
|
Ci = C[(ci+6*ldc+0)*2+1];
|
|
Cr += result12*alphar;
|
|
Ci += result13*alphar;
|
|
Cr -= result13*alphai;
|
|
Ci += result12*alphai;
|
|
C[(ci+6*ldc+0)*2+0] = Cr;
|
|
C[(ci+6*ldc+0)*2+1] = Ci;
|
|
Cr = C[(ci+7*ldc+0)*2+0];
|
|
Ci = C[(ci+7*ldc+0)*2+1];
|
|
Cr += result14*alphar;
|
|
Ci += result15*alphar;
|
|
Cr -= result15*alphai;
|
|
Ci += result14*alphai;
|
|
C[(ci+7*ldc+0)*2+0] = Cr;
|
|
C[(ci+7*ldc+0)*2+1] = Ci;
|
|
m_top+=1;
|
|
}
|
|
|
|
n_top += 8;
|
|
}
|
|
|
|
|
|
|
|
// -- tails for N=4
|
|
|
|
if( N & 4 ) {
|
|
gvl = __riscv_vsetvl_e32m1(8);
|
|
m_top = 0;
|
|
|
|
for (BLASLONG i=0; i<M/8; i+=1) {
|
|
BLASLONG ai=m_top*K*2;
|
|
BLASLONG bi=n_top*K*2;
|
|
float B0r = B[bi+0*2+0];
|
|
float B0i = B[bi+0*2+1];
|
|
float B1r = B[bi+1*2+0];
|
|
float B1i = B[bi+1*2+1];
|
|
float B2r = B[bi+2*2+0];
|
|
float B2i = B[bi+2*2+1];
|
|
float B3r = B[bi+3*2+0];
|
|
float B3i = B[bi+3*2+1];
|
|
bi += 4*2;
|
|
|
|
vfloat32m1_t A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 8*2;
|
|
|
|
// 2 vector regs to hold A array contents, 8 regs to hold values accumulated over k
|
|
// leaving 22 vector registers for temporaries
|
|
vfloat32m1_t tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
vfloat32m1_t tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
vfloat32m1_t tmp1r = __riscv_vfmul_vf_f32m1( A0i, B1i, gvl);
|
|
vfloat32m1_t tmp1i = __riscv_vfmul_vf_f32m1( A0r, B1i, gvl);
|
|
vfloat32m1_t tmp2r = __riscv_vfmul_vf_f32m1( A0i, B2i, gvl);
|
|
vfloat32m1_t tmp2i = __riscv_vfmul_vf_f32m1( A0r, B2i, gvl);
|
|
vfloat32m1_t tmp3r = __riscv_vfmul_vf_f32m1( A0i, B3i, gvl);
|
|
vfloat32m1_t tmp3i = __riscv_vfmul_vf_f32m1( A0r, B3i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
|
|
tmp2r = VFMACC_RR( tmp2r, B2r, A0r, gvl);
|
|
tmp2i = VFMACC_RI( tmp2i, B2r, A0i, gvl);
|
|
tmp3r = VFMACC_RR( tmp3r, B3r, A0r, gvl);
|
|
tmp3i = VFMACC_RI( tmp3i, B3r, A0i, gvl);
|
|
vfloat32m1_t ACC0r = tmp0r;
|
|
vfloat32m1_t ACC0i = tmp0i;
|
|
vfloat32m1_t ACC1r = tmp1r;
|
|
vfloat32m1_t ACC1i = tmp1i;
|
|
vfloat32m1_t ACC2r = tmp2r;
|
|
vfloat32m1_t ACC2i = tmp2i;
|
|
vfloat32m1_t ACC3r = tmp3r;
|
|
vfloat32m1_t ACC3i = tmp3i;
|
|
|
|
for(BLASLONG k=1; k<K; k++) {
|
|
B0r = B[bi+0*2+0];
|
|
B0i = B[bi+0*2+1];
|
|
B1r = B[bi+1*2+0];
|
|
B1i = B[bi+1*2+1];
|
|
B2r = B[bi+2*2+0];
|
|
B2i = B[bi+2*2+1];
|
|
B3r = B[bi+3*2+0];
|
|
B3i = B[bi+3*2+1];
|
|
bi += 4*2;
|
|
|
|
A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 8*2;
|
|
|
|
tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
tmp1r = __riscv_vfmul_vf_f32m1( A0i, B1i, gvl);
|
|
tmp1i = __riscv_vfmul_vf_f32m1( A0r, B1i, gvl);
|
|
tmp2r = __riscv_vfmul_vf_f32m1( A0i, B2i, gvl);
|
|
tmp2i = __riscv_vfmul_vf_f32m1( A0r, B2i, gvl);
|
|
tmp3r = __riscv_vfmul_vf_f32m1( A0i, B3i, gvl);
|
|
tmp3i = __riscv_vfmul_vf_f32m1( A0r, B3i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
|
|
tmp2r = VFMACC_RR( tmp2r, B2r, A0r, gvl);
|
|
tmp2i = VFMACC_RI( tmp2i, B2r, A0i, gvl);
|
|
tmp3r = VFMACC_RR( tmp3r, B3r, A0r, gvl);
|
|
tmp3i = VFMACC_RI( tmp3i, B3r, A0i, gvl);
|
|
ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
|
|
ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
|
|
ACC1r = __riscv_vfadd( ACC1r, tmp1r, gvl);
|
|
ACC1i = __riscv_vfadd( ACC1i, tmp1i, gvl);
|
|
ACC2r = __riscv_vfadd( ACC2r, tmp2r, gvl);
|
|
ACC2i = __riscv_vfadd( ACC2i, tmp2i, gvl);
|
|
ACC3r = __riscv_vfadd( ACC3r, tmp3r, gvl);
|
|
ACC3i = __riscv_vfadd( ACC3i, tmp3i, gvl);
|
|
}
|
|
|
|
|
|
BLASLONG ci=n_top*ldc+m_top;
|
|
|
|
vfloat32m1_t C0r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C0i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C1r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C1i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C2r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C2i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C3r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C3i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
|
|
C0r = __riscv_vfmacc( C0r, alphar, ACC0r, gvl );
|
|
C0i = __riscv_vfmacc( C0i, alphar, ACC0i, gvl );
|
|
C1r = __riscv_vfmacc( C1r, alphar, ACC1r, gvl );
|
|
C1i = __riscv_vfmacc( C1i, alphar, ACC1i, gvl );
|
|
C2r = __riscv_vfmacc( C2r, alphar, ACC2r, gvl );
|
|
C2i = __riscv_vfmacc( C2i, alphar, ACC2i, gvl );
|
|
C3r = __riscv_vfmacc( C3r, alphar, ACC3r, gvl );
|
|
C3i = __riscv_vfmacc( C3i, alphar, ACC3i, gvl );
|
|
C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
|
|
C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
|
|
C1r = __riscv_vfnmsac( C1r, alphai, ACC1i, gvl );
|
|
C1i = __riscv_vfmacc ( C1i, alphai, ACC1r, gvl );
|
|
C2r = __riscv_vfnmsac( C2r, alphai, ACC2i, gvl );
|
|
C2i = __riscv_vfmacc ( C2i, alphai, ACC2r, gvl );
|
|
C3r = __riscv_vfnmsac( C3r, alphai, ACC3i, gvl );
|
|
C3i = __riscv_vfmacc ( C3i, alphai, ACC3r, gvl );
|
|
|
|
ci=n_top*ldc+m_top;
|
|
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C1r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C1i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C2r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C2i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C3r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C3i, gvl);
|
|
|
|
m_top += 8;
|
|
}
|
|
|
|
|
|
if( M & 4 ) {
|
|
gvl = __riscv_vsetvl_e32m1(4);
|
|
|
|
BLASLONG ai=m_top*K*2;
|
|
BLASLONG bi=n_top*K*2;
|
|
float B0r = B[bi+0*2+0];
|
|
float B0i = B[bi+0*2+1];
|
|
float B1r = B[bi+1*2+0];
|
|
float B1i = B[bi+1*2+1];
|
|
float B2r = B[bi+2*2+0];
|
|
float B2i = B[bi+2*2+1];
|
|
float B3r = B[bi+3*2+0];
|
|
float B3i = B[bi+3*2+1];
|
|
bi += 4*2;
|
|
|
|
vfloat32m1_t A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 4*2;
|
|
|
|
// 2 vector regs to hold A array contents, 8 regs to hold values accumulated over k
|
|
// leaving 22 vector registers for temporaries
|
|
vfloat32m1_t tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
vfloat32m1_t tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
vfloat32m1_t tmp1r = __riscv_vfmul_vf_f32m1( A0i, B1i, gvl);
|
|
vfloat32m1_t tmp1i = __riscv_vfmul_vf_f32m1( A0r, B1i, gvl);
|
|
vfloat32m1_t tmp2r = __riscv_vfmul_vf_f32m1( A0i, B2i, gvl);
|
|
vfloat32m1_t tmp2i = __riscv_vfmul_vf_f32m1( A0r, B2i, gvl);
|
|
vfloat32m1_t tmp3r = __riscv_vfmul_vf_f32m1( A0i, B3i, gvl);
|
|
vfloat32m1_t tmp3i = __riscv_vfmul_vf_f32m1( A0r, B3i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
|
|
tmp2r = VFMACC_RR( tmp2r, B2r, A0r, gvl);
|
|
tmp2i = VFMACC_RI( tmp2i, B2r, A0i, gvl);
|
|
tmp3r = VFMACC_RR( tmp3r, B3r, A0r, gvl);
|
|
tmp3i = VFMACC_RI( tmp3i, B3r, A0i, gvl);
|
|
vfloat32m1_t ACC0r = tmp0r;
|
|
vfloat32m1_t ACC0i = tmp0i;
|
|
vfloat32m1_t ACC1r = tmp1r;
|
|
vfloat32m1_t ACC1i = tmp1i;
|
|
vfloat32m1_t ACC2r = tmp2r;
|
|
vfloat32m1_t ACC2i = tmp2i;
|
|
vfloat32m1_t ACC3r = tmp3r;
|
|
vfloat32m1_t ACC3i = tmp3i;
|
|
|
|
for(BLASLONG k=1; k<K; k++) {
|
|
B0r = B[bi+0*2+0];
|
|
B0i = B[bi+0*2+1];
|
|
B1r = B[bi+1*2+0];
|
|
B1i = B[bi+1*2+1];
|
|
B2r = B[bi+2*2+0];
|
|
B2i = B[bi+2*2+1];
|
|
B3r = B[bi+3*2+0];
|
|
B3i = B[bi+3*2+1];
|
|
bi += 4*2;
|
|
|
|
A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 4*2;
|
|
|
|
tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
tmp1r = __riscv_vfmul_vf_f32m1( A0i, B1i, gvl);
|
|
tmp1i = __riscv_vfmul_vf_f32m1( A0r, B1i, gvl);
|
|
tmp2r = __riscv_vfmul_vf_f32m1( A0i, B2i, gvl);
|
|
tmp2i = __riscv_vfmul_vf_f32m1( A0r, B2i, gvl);
|
|
tmp3r = __riscv_vfmul_vf_f32m1( A0i, B3i, gvl);
|
|
tmp3i = __riscv_vfmul_vf_f32m1( A0r, B3i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
|
|
tmp2r = VFMACC_RR( tmp2r, B2r, A0r, gvl);
|
|
tmp2i = VFMACC_RI( tmp2i, B2r, A0i, gvl);
|
|
tmp3r = VFMACC_RR( tmp3r, B3r, A0r, gvl);
|
|
tmp3i = VFMACC_RI( tmp3i, B3r, A0i, gvl);
|
|
ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
|
|
ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
|
|
ACC1r = __riscv_vfadd( ACC1r, tmp1r, gvl);
|
|
ACC1i = __riscv_vfadd( ACC1i, tmp1i, gvl);
|
|
ACC2r = __riscv_vfadd( ACC2r, tmp2r, gvl);
|
|
ACC2i = __riscv_vfadd( ACC2i, tmp2i, gvl);
|
|
ACC3r = __riscv_vfadd( ACC3r, tmp3r, gvl);
|
|
ACC3i = __riscv_vfadd( ACC3i, tmp3i, gvl);
|
|
}
|
|
|
|
|
|
BLASLONG ci=n_top*ldc+m_top;
|
|
|
|
vfloat32m1_t C0r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C0i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C1r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C1i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C2r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C2i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C3r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C3i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
|
|
C0r = __riscv_vfmacc( C0r, alphar, ACC0r, gvl );
|
|
C0i = __riscv_vfmacc( C0i, alphar, ACC0i, gvl );
|
|
C1r = __riscv_vfmacc( C1r, alphar, ACC1r, gvl );
|
|
C1i = __riscv_vfmacc( C1i, alphar, ACC1i, gvl );
|
|
C2r = __riscv_vfmacc( C2r, alphar, ACC2r, gvl );
|
|
C2i = __riscv_vfmacc( C2i, alphar, ACC2i, gvl );
|
|
C3r = __riscv_vfmacc( C3r, alphar, ACC3r, gvl );
|
|
C3i = __riscv_vfmacc( C3i, alphar, ACC3i, gvl );
|
|
C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
|
|
C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
|
|
C1r = __riscv_vfnmsac( C1r, alphai, ACC1i, gvl );
|
|
C1i = __riscv_vfmacc ( C1i, alphai, ACC1r, gvl );
|
|
C2r = __riscv_vfnmsac( C2r, alphai, ACC2i, gvl );
|
|
C2i = __riscv_vfmacc ( C2i, alphai, ACC2r, gvl );
|
|
C3r = __riscv_vfnmsac( C3r, alphai, ACC3i, gvl );
|
|
C3i = __riscv_vfmacc ( C3i, alphai, ACC3r, gvl );
|
|
|
|
ci=n_top*ldc+m_top;
|
|
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C1r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C1i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C2r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C2i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C3r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C3i, gvl);
|
|
|
|
m_top += 4;
|
|
}
|
|
|
|
|
|
if( M & 2 ) {
|
|
gvl = __riscv_vsetvl_e32m1(2);
|
|
|
|
BLASLONG ai=m_top*K*2;
|
|
BLASLONG bi=n_top*K*2;
|
|
float B0r = B[bi+0*2+0];
|
|
float B0i = B[bi+0*2+1];
|
|
float B1r = B[bi+1*2+0];
|
|
float B1i = B[bi+1*2+1];
|
|
float B2r = B[bi+2*2+0];
|
|
float B2i = B[bi+2*2+1];
|
|
float B3r = B[bi+3*2+0];
|
|
float B3i = B[bi+3*2+1];
|
|
bi += 4*2;
|
|
|
|
vfloat32m1_t A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 2*2;
|
|
|
|
// 2 vector regs to hold A array contents, 8 regs to hold values accumulated over k
|
|
// leaving 22 vector registers for temporaries
|
|
vfloat32m1_t tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
vfloat32m1_t tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
vfloat32m1_t tmp1r = __riscv_vfmul_vf_f32m1( A0i, B1i, gvl);
|
|
vfloat32m1_t tmp1i = __riscv_vfmul_vf_f32m1( A0r, B1i, gvl);
|
|
vfloat32m1_t tmp2r = __riscv_vfmul_vf_f32m1( A0i, B2i, gvl);
|
|
vfloat32m1_t tmp2i = __riscv_vfmul_vf_f32m1( A0r, B2i, gvl);
|
|
vfloat32m1_t tmp3r = __riscv_vfmul_vf_f32m1( A0i, B3i, gvl);
|
|
vfloat32m1_t tmp3i = __riscv_vfmul_vf_f32m1( A0r, B3i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
|
|
tmp2r = VFMACC_RR( tmp2r, B2r, A0r, gvl);
|
|
tmp2i = VFMACC_RI( tmp2i, B2r, A0i, gvl);
|
|
tmp3r = VFMACC_RR( tmp3r, B3r, A0r, gvl);
|
|
tmp3i = VFMACC_RI( tmp3i, B3r, A0i, gvl);
|
|
vfloat32m1_t ACC0r = tmp0r;
|
|
vfloat32m1_t ACC0i = tmp0i;
|
|
vfloat32m1_t ACC1r = tmp1r;
|
|
vfloat32m1_t ACC1i = tmp1i;
|
|
vfloat32m1_t ACC2r = tmp2r;
|
|
vfloat32m1_t ACC2i = tmp2i;
|
|
vfloat32m1_t ACC3r = tmp3r;
|
|
vfloat32m1_t ACC3i = tmp3i;
|
|
|
|
for(BLASLONG k=1; k<K; k++) {
|
|
B0r = B[bi+0*2+0];
|
|
B0i = B[bi+0*2+1];
|
|
B1r = B[bi+1*2+0];
|
|
B1i = B[bi+1*2+1];
|
|
B2r = B[bi+2*2+0];
|
|
B2i = B[bi+2*2+1];
|
|
B3r = B[bi+3*2+0];
|
|
B3i = B[bi+3*2+1];
|
|
bi += 4*2;
|
|
|
|
A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 2*2;
|
|
|
|
tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
tmp1r = __riscv_vfmul_vf_f32m1( A0i, B1i, gvl);
|
|
tmp1i = __riscv_vfmul_vf_f32m1( A0r, B1i, gvl);
|
|
tmp2r = __riscv_vfmul_vf_f32m1( A0i, B2i, gvl);
|
|
tmp2i = __riscv_vfmul_vf_f32m1( A0r, B2i, gvl);
|
|
tmp3r = __riscv_vfmul_vf_f32m1( A0i, B3i, gvl);
|
|
tmp3i = __riscv_vfmul_vf_f32m1( A0r, B3i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
|
|
tmp2r = VFMACC_RR( tmp2r, B2r, A0r, gvl);
|
|
tmp2i = VFMACC_RI( tmp2i, B2r, A0i, gvl);
|
|
tmp3r = VFMACC_RR( tmp3r, B3r, A0r, gvl);
|
|
tmp3i = VFMACC_RI( tmp3i, B3r, A0i, gvl);
|
|
ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
|
|
ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
|
|
ACC1r = __riscv_vfadd( ACC1r, tmp1r, gvl);
|
|
ACC1i = __riscv_vfadd( ACC1i, tmp1i, gvl);
|
|
ACC2r = __riscv_vfadd( ACC2r, tmp2r, gvl);
|
|
ACC2i = __riscv_vfadd( ACC2i, tmp2i, gvl);
|
|
ACC3r = __riscv_vfadd( ACC3r, tmp3r, gvl);
|
|
ACC3i = __riscv_vfadd( ACC3i, tmp3i, gvl);
|
|
}
|
|
|
|
|
|
BLASLONG ci=n_top*ldc+m_top;
|
|
|
|
vfloat32m1_t C0r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C0i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C1r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C1i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C2r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C2i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C3r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C3i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
|
|
C0r = __riscv_vfmacc( C0r, alphar, ACC0r, gvl );
|
|
C0i = __riscv_vfmacc( C0i, alphar, ACC0i, gvl );
|
|
C1r = __riscv_vfmacc( C1r, alphar, ACC1r, gvl );
|
|
C1i = __riscv_vfmacc( C1i, alphar, ACC1i, gvl );
|
|
C2r = __riscv_vfmacc( C2r, alphar, ACC2r, gvl );
|
|
C2i = __riscv_vfmacc( C2i, alphar, ACC2i, gvl );
|
|
C3r = __riscv_vfmacc( C3r, alphar, ACC3r, gvl );
|
|
C3i = __riscv_vfmacc( C3i, alphar, ACC3i, gvl );
|
|
C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
|
|
C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
|
|
C1r = __riscv_vfnmsac( C1r, alphai, ACC1i, gvl );
|
|
C1i = __riscv_vfmacc ( C1i, alphai, ACC1r, gvl );
|
|
C2r = __riscv_vfnmsac( C2r, alphai, ACC2i, gvl );
|
|
C2i = __riscv_vfmacc ( C2i, alphai, ACC2r, gvl );
|
|
C3r = __riscv_vfnmsac( C3r, alphai, ACC3i, gvl );
|
|
C3i = __riscv_vfmacc ( C3i, alphai, ACC3r, gvl );
|
|
|
|
ci=n_top*ldc+m_top;
|
|
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C1r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C1i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C2r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C2i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C3r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C3i, gvl);
|
|
|
|
m_top += 2;
|
|
}
|
|
|
|
|
|
if( M & 1 ) {
|
|
float result0 = 0;
|
|
float result1 = 0;
|
|
float result2 = 0;
|
|
float result3 = 0;
|
|
float result4 = 0;
|
|
float result5 = 0;
|
|
float result6 = 0;
|
|
float result7 = 0;
|
|
BLASLONG ai=m_top*K*2;
|
|
BLASLONG bi=n_top*K*2;
|
|
|
|
for(BLASLONG k=0; k<K; k++) {
|
|
result0+=S0*A[ai+0+0]*B[bi+0+0] + S1*A[ai+0+1]*B[bi+0+1];
|
|
result1+=S2*A[ai+0+1]*B[bi+0+0] + S3*A[ai+0+0]*B[bi+0+1];
|
|
result2+=S0*A[ai+0+0]*B[bi+2+0] + S1*A[ai+0+1]*B[bi+2+1];
|
|
result3+=S2*A[ai+0+1]*B[bi+2+0] + S3*A[ai+0+0]*B[bi+2+1];
|
|
result4+=S0*A[ai+0+0]*B[bi+4+0] + S1*A[ai+0+1]*B[bi+4+1];
|
|
result5+=S2*A[ai+0+1]*B[bi+4+0] + S3*A[ai+0+0]*B[bi+4+1];
|
|
result6+=S0*A[ai+0+0]*B[bi+6+0] + S1*A[ai+0+1]*B[bi+6+1];
|
|
result7+=S2*A[ai+0+1]*B[bi+6+0] + S3*A[ai+0+0]*B[bi+6+1];
|
|
ai+=1*2;
|
|
bi+=4*2;
|
|
}
|
|
|
|
BLASLONG ci=n_top*ldc+m_top;
|
|
float Cr, Ci;
|
|
Cr = C[(ci+0*ldc+0)*2+0];
|
|
Ci = C[(ci+0*ldc+0)*2+1];
|
|
Cr += result0*alphar;
|
|
Ci += result1*alphar;
|
|
Cr -= result1*alphai;
|
|
Ci += result0*alphai;
|
|
C[(ci+0*ldc+0)*2+0] = Cr;
|
|
C[(ci+0*ldc+0)*2+1] = Ci;
|
|
Cr = C[(ci+1*ldc+0)*2+0];
|
|
Ci = C[(ci+1*ldc+0)*2+1];
|
|
Cr += result2*alphar;
|
|
Ci += result3*alphar;
|
|
Cr -= result3*alphai;
|
|
Ci += result2*alphai;
|
|
C[(ci+1*ldc+0)*2+0] = Cr;
|
|
C[(ci+1*ldc+0)*2+1] = Ci;
|
|
Cr = C[(ci+2*ldc+0)*2+0];
|
|
Ci = C[(ci+2*ldc+0)*2+1];
|
|
Cr += result4*alphar;
|
|
Ci += result5*alphar;
|
|
Cr -= result5*alphai;
|
|
Ci += result4*alphai;
|
|
C[(ci+2*ldc+0)*2+0] = Cr;
|
|
C[(ci+2*ldc+0)*2+1] = Ci;
|
|
Cr = C[(ci+3*ldc+0)*2+0];
|
|
Ci = C[(ci+3*ldc+0)*2+1];
|
|
Cr += result6*alphar;
|
|
Ci += result7*alphar;
|
|
Cr -= result7*alphai;
|
|
Ci += result6*alphai;
|
|
C[(ci+3*ldc+0)*2+0] = Cr;
|
|
C[(ci+3*ldc+0)*2+1] = Ci;
|
|
m_top+=1;
|
|
}
|
|
|
|
n_top += 4;
|
|
}
|
|
|
|
|
|
|
|
// -- tails for N=2
|
|
|
|
if( N & 2 ) {
|
|
gvl = __riscv_vsetvl_e32m1(8);
|
|
m_top = 0;
|
|
|
|
for (BLASLONG i=0; i<M/8; i+=1) {
|
|
BLASLONG ai=m_top*K*2;
|
|
BLASLONG bi=n_top*K*2;
|
|
float B0r = B[bi+0*2+0];
|
|
float B0i = B[bi+0*2+1];
|
|
float B1r = B[bi+1*2+0];
|
|
float B1i = B[bi+1*2+1];
|
|
bi += 2*2;
|
|
|
|
vfloat32m1_t A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 8*2;
|
|
|
|
// 2 vector regs to hold A array contents, 4 regs to hold values accumulated over k
|
|
// leaving 26 vector registers for temporaries
|
|
vfloat32m1_t tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
vfloat32m1_t tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
vfloat32m1_t tmp1r = __riscv_vfmul_vf_f32m1( A0i, B1i, gvl);
|
|
vfloat32m1_t tmp1i = __riscv_vfmul_vf_f32m1( A0r, B1i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
|
|
vfloat32m1_t ACC0r = tmp0r;
|
|
vfloat32m1_t ACC0i = tmp0i;
|
|
vfloat32m1_t ACC1r = tmp1r;
|
|
vfloat32m1_t ACC1i = tmp1i;
|
|
|
|
for(BLASLONG k=1; k<K; k++) {
|
|
B0r = B[bi+0*2+0];
|
|
B0i = B[bi+0*2+1];
|
|
B1r = B[bi+1*2+0];
|
|
B1i = B[bi+1*2+1];
|
|
bi += 2*2;
|
|
|
|
A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 8*2;
|
|
|
|
tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
tmp1r = __riscv_vfmul_vf_f32m1( A0i, B1i, gvl);
|
|
tmp1i = __riscv_vfmul_vf_f32m1( A0r, B1i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
|
|
ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
|
|
ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
|
|
ACC1r = __riscv_vfadd( ACC1r, tmp1r, gvl);
|
|
ACC1i = __riscv_vfadd( ACC1i, tmp1i, gvl);
|
|
}
|
|
|
|
|
|
BLASLONG ci=n_top*ldc+m_top;
|
|
|
|
vfloat32m1_t C0r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C0i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C1r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C1i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
|
|
C0r = __riscv_vfmacc( C0r, alphar, ACC0r, gvl );
|
|
C0i = __riscv_vfmacc( C0i, alphar, ACC0i, gvl );
|
|
C1r = __riscv_vfmacc( C1r, alphar, ACC1r, gvl );
|
|
C1i = __riscv_vfmacc( C1i, alphar, ACC1i, gvl );
|
|
C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
|
|
C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
|
|
C1r = __riscv_vfnmsac( C1r, alphai, ACC1i, gvl );
|
|
C1i = __riscv_vfmacc ( C1i, alphai, ACC1r, gvl );
|
|
|
|
ci=n_top*ldc+m_top;
|
|
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C1r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C1i, gvl);
|
|
|
|
m_top += 8;
|
|
}
|
|
|
|
|
|
if( M & 4 ) {
|
|
gvl = __riscv_vsetvl_e32m1(4);
|
|
|
|
BLASLONG ai=m_top*K*2;
|
|
BLASLONG bi=n_top*K*2;
|
|
float B0r = B[bi+0*2+0];
|
|
float B0i = B[bi+0*2+1];
|
|
float B1r = B[bi+1*2+0];
|
|
float B1i = B[bi+1*2+1];
|
|
bi += 2*2;
|
|
|
|
vfloat32m1_t A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 4*2;
|
|
|
|
// 2 vector regs to hold A array contents, 4 regs to hold values accumulated over k
|
|
// leaving 26 vector registers for temporaries
|
|
vfloat32m1_t tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
vfloat32m1_t tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
vfloat32m1_t tmp1r = __riscv_vfmul_vf_f32m1( A0i, B1i, gvl);
|
|
vfloat32m1_t tmp1i = __riscv_vfmul_vf_f32m1( A0r, B1i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
|
|
vfloat32m1_t ACC0r = tmp0r;
|
|
vfloat32m1_t ACC0i = tmp0i;
|
|
vfloat32m1_t ACC1r = tmp1r;
|
|
vfloat32m1_t ACC1i = tmp1i;
|
|
|
|
for(BLASLONG k=1; k<K; k++) {
|
|
B0r = B[bi+0*2+0];
|
|
B0i = B[bi+0*2+1];
|
|
B1r = B[bi+1*2+0];
|
|
B1i = B[bi+1*2+1];
|
|
bi += 2*2;
|
|
|
|
A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 4*2;
|
|
|
|
tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
tmp1r = __riscv_vfmul_vf_f32m1( A0i, B1i, gvl);
|
|
tmp1i = __riscv_vfmul_vf_f32m1( A0r, B1i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
|
|
ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
|
|
ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
|
|
ACC1r = __riscv_vfadd( ACC1r, tmp1r, gvl);
|
|
ACC1i = __riscv_vfadd( ACC1i, tmp1i, gvl);
|
|
}
|
|
|
|
|
|
BLASLONG ci=n_top*ldc+m_top;
|
|
|
|
vfloat32m1_t C0r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C0i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C1r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C1i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
|
|
C0r = __riscv_vfmacc( C0r, alphar, ACC0r, gvl );
|
|
C0i = __riscv_vfmacc( C0i, alphar, ACC0i, gvl );
|
|
C1r = __riscv_vfmacc( C1r, alphar, ACC1r, gvl );
|
|
C1i = __riscv_vfmacc( C1i, alphar, ACC1i, gvl );
|
|
C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
|
|
C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
|
|
C1r = __riscv_vfnmsac( C1r, alphai, ACC1i, gvl );
|
|
C1i = __riscv_vfmacc ( C1i, alphai, ACC1r, gvl );
|
|
|
|
ci=n_top*ldc+m_top;
|
|
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C1r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C1i, gvl);
|
|
|
|
m_top += 4;
|
|
}
|
|
|
|
|
|
if( M & 2 ) {
|
|
gvl = __riscv_vsetvl_e32m1(2);
|
|
|
|
BLASLONG ai=m_top*K*2;
|
|
BLASLONG bi=n_top*K*2;
|
|
float B0r = B[bi+0*2+0];
|
|
float B0i = B[bi+0*2+1];
|
|
float B1r = B[bi+1*2+0];
|
|
float B1i = B[bi+1*2+1];
|
|
bi += 2*2;
|
|
|
|
vfloat32m1_t A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 2*2;
|
|
|
|
// 2 vector regs to hold A array contents, 4 regs to hold values accumulated over k
|
|
// leaving 26 vector registers for temporaries
|
|
vfloat32m1_t tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
vfloat32m1_t tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
vfloat32m1_t tmp1r = __riscv_vfmul_vf_f32m1( A0i, B1i, gvl);
|
|
vfloat32m1_t tmp1i = __riscv_vfmul_vf_f32m1( A0r, B1i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
|
|
vfloat32m1_t ACC0r = tmp0r;
|
|
vfloat32m1_t ACC0i = tmp0i;
|
|
vfloat32m1_t ACC1r = tmp1r;
|
|
vfloat32m1_t ACC1i = tmp1i;
|
|
|
|
for(BLASLONG k=1; k<K; k++) {
|
|
B0r = B[bi+0*2+0];
|
|
B0i = B[bi+0*2+1];
|
|
B1r = B[bi+1*2+0];
|
|
B1i = B[bi+1*2+1];
|
|
bi += 2*2;
|
|
|
|
A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 2*2;
|
|
|
|
tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
tmp1r = __riscv_vfmul_vf_f32m1( A0i, B1i, gvl);
|
|
tmp1i = __riscv_vfmul_vf_f32m1( A0r, B1i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
|
|
tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
|
|
ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
|
|
ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
|
|
ACC1r = __riscv_vfadd( ACC1r, tmp1r, gvl);
|
|
ACC1i = __riscv_vfadd( ACC1i, tmp1i, gvl);
|
|
}
|
|
|
|
|
|
BLASLONG ci=n_top*ldc+m_top;
|
|
|
|
vfloat32m1_t C0r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C0i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
ci += ldc-gvl*0;
|
|
vfloat32m1_t C1r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C1i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
|
|
C0r = __riscv_vfmacc( C0r, alphar, ACC0r, gvl );
|
|
C0i = __riscv_vfmacc( C0i, alphar, ACC0i, gvl );
|
|
C1r = __riscv_vfmacc( C1r, alphar, ACC1r, gvl );
|
|
C1i = __riscv_vfmacc( C1i, alphar, ACC1i, gvl );
|
|
C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
|
|
C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
|
|
C1r = __riscv_vfnmsac( C1r, alphai, ACC1i, gvl );
|
|
C1i = __riscv_vfmacc ( C1i, alphai, ACC1r, gvl );
|
|
|
|
ci=n_top*ldc+m_top;
|
|
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
|
|
ci += ldc-gvl*0;
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C1r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C1i, gvl);
|
|
|
|
m_top += 2;
|
|
}
|
|
|
|
|
|
if( M & 1 ) {
|
|
float result0 = 0;
|
|
float result1 = 0;
|
|
float result2 = 0;
|
|
float result3 = 0;
|
|
BLASLONG ai=m_top*K*2;
|
|
BLASLONG bi=n_top*K*2;
|
|
|
|
for(BLASLONG k=0; k<K; k++) {
|
|
result0+=S0*A[ai+0+0]*B[bi+0+0] + S1*A[ai+0+1]*B[bi+0+1];
|
|
result1+=S2*A[ai+0+1]*B[bi+0+0] + S3*A[ai+0+0]*B[bi+0+1];
|
|
result2+=S0*A[ai+0+0]*B[bi+2+0] + S1*A[ai+0+1]*B[bi+2+1];
|
|
result3+=S2*A[ai+0+1]*B[bi+2+0] + S3*A[ai+0+0]*B[bi+2+1];
|
|
ai+=1*2;
|
|
bi+=2*2;
|
|
}
|
|
|
|
BLASLONG ci=n_top*ldc+m_top;
|
|
float Cr, Ci;
|
|
Cr = C[(ci+0*ldc+0)*2+0];
|
|
Ci = C[(ci+0*ldc+0)*2+1];
|
|
Cr += result0*alphar;
|
|
Ci += result1*alphar;
|
|
Cr -= result1*alphai;
|
|
Ci += result0*alphai;
|
|
C[(ci+0*ldc+0)*2+0] = Cr;
|
|
C[(ci+0*ldc+0)*2+1] = Ci;
|
|
Cr = C[(ci+1*ldc+0)*2+0];
|
|
Ci = C[(ci+1*ldc+0)*2+1];
|
|
Cr += result2*alphar;
|
|
Ci += result3*alphar;
|
|
Cr -= result3*alphai;
|
|
Ci += result2*alphai;
|
|
C[(ci+1*ldc+0)*2+0] = Cr;
|
|
C[(ci+1*ldc+0)*2+1] = Ci;
|
|
m_top+=1;
|
|
}
|
|
|
|
n_top += 2;
|
|
}
|
|
|
|
|
|
|
|
// -- tails for N=1
|
|
|
|
if( N & 1 ) {
|
|
gvl = __riscv_vsetvl_e32m1(8);
|
|
m_top = 0;
|
|
|
|
for (BLASLONG i=0; i<M/8; i+=1) {
|
|
BLASLONG ai=m_top*K*2;
|
|
BLASLONG bi=n_top*K*2;
|
|
float B0r = B[bi+0*2+0];
|
|
float B0i = B[bi+0*2+1];
|
|
bi += 1*2;
|
|
|
|
vfloat32m1_t A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 8*2;
|
|
|
|
// 2 vector regs to hold A array contents, 2 regs to hold values accumulated over k
|
|
// leaving 28 vector registers for temporaries
|
|
vfloat32m1_t tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
vfloat32m1_t tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
vfloat32m1_t ACC0r = tmp0r;
|
|
vfloat32m1_t ACC0i = tmp0i;
|
|
|
|
for(BLASLONG k=1; k<K; k++) {
|
|
B0r = B[bi+0*2+0];
|
|
B0i = B[bi+0*2+1];
|
|
bi += 1*2;
|
|
|
|
A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 8*2;
|
|
|
|
tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
|
|
ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
|
|
}
|
|
|
|
|
|
BLASLONG ci=n_top*ldc+m_top;
|
|
|
|
vfloat32m1_t C0r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C0i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
|
|
C0r = __riscv_vfmacc( C0r, alphar, ACC0r, gvl );
|
|
C0i = __riscv_vfmacc( C0i, alphar, ACC0i, gvl );
|
|
C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
|
|
C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
|
|
|
|
ci=n_top*ldc+m_top;
|
|
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
|
|
|
|
m_top += 8;
|
|
}
|
|
|
|
|
|
if( M & 4 ) {
|
|
gvl = __riscv_vsetvl_e32m1(4);
|
|
|
|
BLASLONG ai=m_top*K*2;
|
|
BLASLONG bi=n_top*K*2;
|
|
float B0r = B[bi+0*2+0];
|
|
float B0i = B[bi+0*2+1];
|
|
bi += 1*2;
|
|
|
|
vfloat32m1_t A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 4*2;
|
|
|
|
// 2 vector regs to hold A array contents, 2 regs to hold values accumulated over k
|
|
// leaving 28 vector registers for temporaries
|
|
vfloat32m1_t tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
vfloat32m1_t tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
vfloat32m1_t ACC0r = tmp0r;
|
|
vfloat32m1_t ACC0i = tmp0i;
|
|
|
|
for(BLASLONG k=1; k<K; k++) {
|
|
B0r = B[bi+0*2+0];
|
|
B0i = B[bi+0*2+1];
|
|
bi += 1*2;
|
|
|
|
A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 4*2;
|
|
|
|
tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
|
|
ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
|
|
}
|
|
|
|
|
|
BLASLONG ci=n_top*ldc+m_top;
|
|
|
|
vfloat32m1_t C0r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C0i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
|
|
C0r = __riscv_vfmacc( C0r, alphar, ACC0r, gvl );
|
|
C0i = __riscv_vfmacc( C0i, alphar, ACC0i, gvl );
|
|
C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
|
|
C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
|
|
|
|
ci=n_top*ldc+m_top;
|
|
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
|
|
|
|
m_top += 4;
|
|
}
|
|
|
|
|
|
if( M & 2 ) {
|
|
gvl = __riscv_vsetvl_e32m1(2);
|
|
|
|
BLASLONG ai=m_top*K*2;
|
|
BLASLONG bi=n_top*K*2;
|
|
float B0r = B[bi+0*2+0];
|
|
float B0i = B[bi+0*2+1];
|
|
bi += 1*2;
|
|
|
|
vfloat32m1_t A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 2*2;
|
|
|
|
// 2 vector regs to hold A array contents, 2 regs to hold values accumulated over k
|
|
// leaving 28 vector registers for temporaries
|
|
vfloat32m1_t tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
vfloat32m1_t tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
vfloat32m1_t ACC0r = tmp0r;
|
|
vfloat32m1_t ACC0i = tmp0i;
|
|
|
|
for(BLASLONG k=1; k<K; k++) {
|
|
B0r = B[bi+0*2+0];
|
|
B0i = B[bi+0*2+1];
|
|
bi += 1*2;
|
|
|
|
A0r = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
|
|
A0i = __riscv_vlse32_v_f32m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
|
|
ai += 2*2;
|
|
|
|
tmp0r = __riscv_vfmul_vf_f32m1( A0i, B0i, gvl);
|
|
tmp0i = __riscv_vfmul_vf_f32m1( A0r, B0i, gvl);
|
|
tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
|
|
tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
|
|
ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
|
|
ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
|
|
}
|
|
|
|
|
|
BLASLONG ci=n_top*ldc+m_top;
|
|
|
|
vfloat32m1_t C0r = __riscv_vlse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, gvl );
|
|
vfloat32m1_t C0i = __riscv_vlse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, gvl );
|
|
|
|
C0r = __riscv_vfmacc( C0r, alphar, ACC0r, gvl );
|
|
C0i = __riscv_vfmacc( C0i, alphar, ACC0i, gvl );
|
|
C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
|
|
C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
|
|
|
|
ci=n_top*ldc+m_top;
|
|
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
|
|
__riscv_vsse32_v_f32m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
|
|
|
|
m_top += 2;
|
|
}
|
|
|
|
|
|
if( M & 1 ) {
|
|
float result0 = 0;
|
|
float result1 = 0;
|
|
BLASLONG ai=m_top*K*2;
|
|
BLASLONG bi=n_top*K*2;
|
|
|
|
for(BLASLONG k=0; k<K; k++) {
|
|
result0+=S0*A[ai+0+0]*B[bi+0+0] + S1*A[ai+0+1]*B[bi+0+1];
|
|
result1+=S2*A[ai+0+1]*B[bi+0+0] + S3*A[ai+0+0]*B[bi+0+1];
|
|
ai+=1*2;
|
|
bi+=1*2;
|
|
}
|
|
|
|
BLASLONG ci=n_top*ldc+m_top;
|
|
float Cr, Ci;
|
|
Cr = C[(ci+0*ldc+0)*2+0];
|
|
Ci = C[(ci+0*ldc+0)*2+1];
|
|
Cr += result0*alphar;
|
|
Ci += result1*alphar;
|
|
Cr -= result1*alphai;
|
|
Ci += result0*alphai;
|
|
C[(ci+0*ldc+0)*2+0] = Cr;
|
|
C[(ci+0*ldc+0)*2+1] = Ci;
|
|
m_top+=1;
|
|
}
|
|
|
|
n_top += 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|