263 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			263 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
      SUBROUTINE DSYMVF ( UPLO, N, ALPHA, A, LDA, X, INCX,
 | 
						|
     $                   BETA, Y, INCY )
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      DOUBLE PRECISION   ALPHA, BETA
 | 
						|
      INTEGER            INCX, INCY, LDA, N
 | 
						|
      CHARACTER*1        UPLO
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), X( * ), Y( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  Purpose
 | 
						|
*  =======
 | 
						|
*
 | 
						|
*  DSYMV  performs the matrix-vector  operation
 | 
						|
*
 | 
						|
*     y := alpha*A*x + beta*y,
 | 
						|
*
 | 
						|
*  where alpha and beta are scalars, x and y are n element vectors and
 | 
						|
*  A is an n by n symmetric matrix.
 | 
						|
*
 | 
						|
*  Parameters
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*  UPLO   - CHARACTER*1.
 | 
						|
*           On entry, UPLO specifies whether the upper or lower
 | 
						|
*           triangular part of the array A is to be referenced as
 | 
						|
*           follows:
 | 
						|
*
 | 
						|
*              UPLO = 'U' or 'u'   Only the upper triangular part of A
 | 
						|
*                                  is to be referenced.
 | 
						|
*
 | 
						|
*              UPLO = 'L' or 'l'   Only the lower triangular part of A
 | 
						|
*                                  is to be referenced.
 | 
						|
*
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  N      - INTEGER.
 | 
						|
*           On entry, N specifies the order of the matrix A.
 | 
						|
*           N must be at least zero.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  ALPHA  - DOUBLE PRECISION.
 | 
						|
*           On entry, ALPHA specifies the scalar alpha.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
 | 
						|
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
 | 
						|
*           upper triangular part of the array A must contain the upper
 | 
						|
*           triangular part of the symmetric matrix and the strictly
 | 
						|
*           lower triangular part of A is not referenced.
 | 
						|
*           Before entry with UPLO = 'L' or 'l', the leading n by n
 | 
						|
*           lower triangular part of the array A must contain the lower
 | 
						|
*           triangular part of the symmetric matrix and the strictly
 | 
						|
*           upper triangular part of A is not referenced.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  LDA    - INTEGER.
 | 
						|
*           On entry, LDA specifies the first dimension of A as declared
 | 
						|
*           in the calling (sub) program. LDA must be at least
 | 
						|
*           max( 1, n ).
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  X      - DOUBLE PRECISION array of dimension at least
 | 
						|
*           ( 1 + ( n - 1 )*abs( INCX ) ).
 | 
						|
*           Before entry, the incremented array X must contain the n
 | 
						|
*           element vector x.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  INCX   - INTEGER.
 | 
						|
*           On entry, INCX specifies the increment for the elements of
 | 
						|
*           X. INCX must not be zero.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  BETA   - DOUBLE PRECISION.
 | 
						|
*           On entry, BETA specifies the scalar beta. When BETA is
 | 
						|
*           supplied as zero then Y need not be set on input.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  Y      - DOUBLE PRECISION array of dimension at least
 | 
						|
*           ( 1 + ( n - 1 )*abs( INCY ) ).
 | 
						|
*           Before entry, the incremented array Y must contain the n
 | 
						|
*           element vector y. On exit, Y is overwritten by the updated
 | 
						|
*           vector y.
 | 
						|
*
 | 
						|
*  INCY   - INTEGER.
 | 
						|
*           On entry, INCY specifies the increment for the elements of
 | 
						|
*           Y. INCY must not be zero.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*
 | 
						|
*  Level 2 Blas routine.
 | 
						|
*
 | 
						|
*  -- Written on 22-October-1986.
 | 
						|
*     Jack Dongarra, Argonne National Lab.
 | 
						|
*     Jeremy Du Croz, Nag Central Office.
 | 
						|
*     Sven Hammarling, Nag Central Office.
 | 
						|
*     Richard Hanson, Sandia National Labs.
 | 
						|
*
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE         , ZERO
 | 
						|
      PARAMETER        ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
*     .. Local Scalars ..
 | 
						|
      DOUBLE PRECISION   TEMP1, TEMP2
 | 
						|
      INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF     ( .NOT.LSAME( UPLO, 'U' ).AND.
 | 
						|
     $         .NOT.LSAME( UPLO, 'L' )      )THEN
 | 
						|
         INFO = 1
 | 
						|
      ELSE IF( N.LT.0 )THEN
 | 
						|
         INFO = 2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) )THEN
 | 
						|
         INFO = 5
 | 
						|
      ELSE IF( INCX.EQ.0 )THEN
 | 
						|
         INFO = 7
 | 
						|
      ELSE IF( INCY.EQ.0 )THEN
 | 
						|
         INFO = 10
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 )THEN
 | 
						|
         CALL XERBLA( 'DSYMV ', INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Set up the start points in  X  and  Y.
 | 
						|
*
 | 
						|
      IF( INCX.GT.0 )THEN
 | 
						|
         KX = 1
 | 
						|
      ELSE
 | 
						|
         KX = 1 - ( N - 1 )*INCX
 | 
						|
      END IF
 | 
						|
      IF( INCY.GT.0 )THEN
 | 
						|
         KY = 1
 | 
						|
      ELSE
 | 
						|
         KY = 1 - ( N - 1 )*INCY
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Start the operations. In this version the elements of A are
 | 
						|
*     accessed sequentially with one pass through the triangular part
 | 
						|
*     of A.
 | 
						|
*
 | 
						|
*     First form  y := beta*y.
 | 
						|
*
 | 
						|
      IF( BETA.NE.ONE )THEN
 | 
						|
         IF( INCY.EQ.1 )THEN
 | 
						|
            IF( BETA.EQ.ZERO )THEN
 | 
						|
               DO 10, I = 1, N
 | 
						|
                  Y( I ) = ZERO
 | 
						|
   10          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 20, I = 1, N
 | 
						|
                  Y( I ) = BETA*Y( I )
 | 
						|
   20          CONTINUE
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            IY = KY
 | 
						|
            IF( BETA.EQ.ZERO )THEN
 | 
						|
               DO 30, I = 1, N
 | 
						|
                  Y( IY ) = ZERO
 | 
						|
                  IY      = IY   + INCY
 | 
						|
   30          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 40, I = 1, N
 | 
						|
                  Y( IY ) = BETA*Y( IY )
 | 
						|
                  IY      = IY           + INCY
 | 
						|
   40          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      IF( ALPHA.EQ.ZERO )
 | 
						|
     $   RETURN
 | 
						|
      IF( LSAME( UPLO, 'U' ) )THEN
 | 
						|
*
 | 
						|
*        Form  y  when A is stored in upper triangle.
 | 
						|
*
 | 
						|
         IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
 | 
						|
            DO 60, J = 1, N
 | 
						|
               TEMP1 = ALPHA*X( J )
 | 
						|
               TEMP2 = ZERO
 | 
						|
               DO 50, I = 1, J - 1
 | 
						|
                  Y( I ) = Y( I ) + TEMP1*A( I, J )
 | 
						|
                  TEMP2  = TEMP2  + A( I, J )*X( I )
 | 
						|
   50          CONTINUE
 | 
						|
               Y( J ) = Y( J ) + TEMP1*A( J, J ) + ALPHA*TEMP2
 | 
						|
   60       CONTINUE
 | 
						|
         ELSE
 | 
						|
            JX = KX
 | 
						|
            JY = KY
 | 
						|
            DO 80, J = 1, N
 | 
						|
               TEMP1 = ALPHA*X( JX )
 | 
						|
               TEMP2 = ZERO
 | 
						|
               IX    = KX
 | 
						|
               IY    = KY
 | 
						|
               DO 70, I = 1, J - 1
 | 
						|
                  Y( IY ) = Y( IY ) + TEMP1*A( I, J )
 | 
						|
                  TEMP2   = TEMP2   + A( I, J )*X( IX )
 | 
						|
                  IX      = IX      + INCX
 | 
						|
                  IY      = IY      + INCY
 | 
						|
   70          CONTINUE
 | 
						|
               Y( JY ) = Y( JY ) + TEMP1*A( J, J ) + ALPHA*TEMP2
 | 
						|
               JX      = JX      + INCX
 | 
						|
               JY      = JY      + INCY
 | 
						|
   80       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Form  y  when A is stored in lower triangle.
 | 
						|
*
 | 
						|
         IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
 | 
						|
            DO 100, J = 1, N
 | 
						|
               TEMP1  = ALPHA*X( J )
 | 
						|
               TEMP2  = ZERO
 | 
						|
               Y( J ) = Y( J )       + TEMP1*A( J, J )
 | 
						|
               DO 90, I = J + 1, N
 | 
						|
                  Y( I ) = Y( I ) + TEMP1*A( I, J )
 | 
						|
                  TEMP2  = TEMP2  + A( I, J )*X( I )
 | 
						|
   90          CONTINUE
 | 
						|
               Y( J ) = Y( J ) + ALPHA*TEMP2
 | 
						|
  100       CONTINUE
 | 
						|
         ELSE
 | 
						|
            JX = KX
 | 
						|
            JY = KY
 | 
						|
            DO 120, J = 1, N
 | 
						|
               TEMP1   = ALPHA*X( JX )
 | 
						|
               TEMP2   = ZERO
 | 
						|
               Y( JY ) = Y( JY )       + TEMP1*A( J, J )
 | 
						|
               IX      = JX
 | 
						|
               IY      = JY
 | 
						|
               DO 110, I = J + 1, N
 | 
						|
                  IX      = IX      + INCX
 | 
						|
                  IY      = IY      + INCY
 | 
						|
                  Y( IY ) = Y( IY ) + TEMP1*A( I, J )
 | 
						|
                  TEMP2   = TEMP2   + A( I, J )*X( IX )
 | 
						|
  110          CONTINUE
 | 
						|
               Y( JY ) = Y( JY ) + ALPHA*TEMP2
 | 
						|
               JX      = JX      + INCX
 | 
						|
               JY      = JY      + INCY
 | 
						|
  120       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DSYMV .
 | 
						|
*
 | 
						|
      END
 |