1194 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1194 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
static real c_b35 = 10.f;
 | 
						|
static real c_b71 = .5f;
 | 
						|
 | 
						|
/* > \brief \b SGGBAL */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download SGGBAL + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggbal.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggbal.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggbal.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE SGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, */
 | 
						|
/*                          RSCALE, WORK, INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          JOB */
 | 
						|
/*       INTEGER            IHI, ILO, INFO, LDA, LDB, N */
 | 
						|
/*       REAL               A( LDA, * ), B( LDB, * ), LSCALE( * ), */
 | 
						|
/*      $                   RSCALE( * ), WORK( * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > SGGBAL balances a pair of general real matrices (A,B).  This */
 | 
						|
/* > involves, first, permuting A and B by similarity transformations to */
 | 
						|
/* > isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N */
 | 
						|
/* > elements on the diagonal; and second, applying a diagonal similarity */
 | 
						|
/* > transformation to rows and columns ILO to IHI to make the rows */
 | 
						|
/* > and columns as close in norm as possible. Both steps are optional. */
 | 
						|
/* > */
 | 
						|
/* > Balancing may reduce the 1-norm of the matrices, and improve the */
 | 
						|
/* > accuracy of the computed eigenvalues and/or eigenvectors in the */
 | 
						|
/* > generalized eigenvalue problem A*x = lambda*B*x. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] JOB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          JOB is CHARACTER*1 */
 | 
						|
/* >          Specifies the operations to be performed on A and B: */
 | 
						|
/* >          = 'N':  none:  simply set ILO = 1, IHI = N, LSCALE(I) = 1.0 */
 | 
						|
/* >                  and RSCALE(I) = 1.0 for i = 1,...,N. */
 | 
						|
/* >          = 'P':  permute only; */
 | 
						|
/* >          = 'S':  scale only; */
 | 
						|
/* >          = 'B':  both permute and scale. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrices A and B.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] A */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          A is REAL array, dimension (LDA,N) */
 | 
						|
/* >          On entry, the input matrix A. */
 | 
						|
/* >          On exit,  A is overwritten by the balanced matrix. */
 | 
						|
/* >          If JOB = 'N', A is not referenced. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDA is INTEGER */
 | 
						|
/* >          The leading dimension of the array A. LDA >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] B */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          B is REAL array, dimension (LDB,N) */
 | 
						|
/* >          On entry, the input matrix B. */
 | 
						|
/* >          On exit,  B is overwritten by the balanced matrix. */
 | 
						|
/* >          If JOB = 'N', B is not referenced. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDB is INTEGER */
 | 
						|
/* >          The leading dimension of the array B. LDB >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] ILO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ILO is INTEGER */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] IHI */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IHI is INTEGER */
 | 
						|
/* >          ILO and IHI are set to integers such that on exit */
 | 
						|
/* >          A(i,j) = 0 and B(i,j) = 0 if i > j and */
 | 
						|
/* >          j = 1,...,ILO-1 or i = IHI+1,...,N. */
 | 
						|
/* >          If JOB = 'N' or 'S', ILO = 1 and IHI = N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] LSCALE */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LSCALE is REAL array, dimension (N) */
 | 
						|
/* >          Details of the permutations and scaling factors applied */
 | 
						|
/* >          to the left side of A and B.  If P(j) is the index of the */
 | 
						|
/* >          row interchanged with row j, and D(j) */
 | 
						|
/* >          is the scaling factor applied to row j, then */
 | 
						|
/* >            LSCALE(j) = P(j)    for J = 1,...,ILO-1 */
 | 
						|
/* >                      = D(j)    for J = ILO,...,IHI */
 | 
						|
/* >                      = P(j)    for J = IHI+1,...,N. */
 | 
						|
/* >          The order in which the interchanges are made is N to IHI+1, */
 | 
						|
/* >          then 1 to ILO-1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] RSCALE */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          RSCALE is REAL array, dimension (N) */
 | 
						|
/* >          Details of the permutations and scaling factors applied */
 | 
						|
/* >          to the right side of A and B.  If P(j) is the index of the */
 | 
						|
/* >          column interchanged with column j, and D(j) */
 | 
						|
/* >          is the scaling factor applied to column j, then */
 | 
						|
/* >            LSCALE(j) = P(j)    for J = 1,...,ILO-1 */
 | 
						|
/* >                      = D(j)    for J = ILO,...,IHI */
 | 
						|
/* >                      = P(j)    for J = IHI+1,...,N. */
 | 
						|
/* >          The order in which the interchanges are made is N to IHI+1, */
 | 
						|
/* >          then 1 to ILO-1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is REAL array, dimension (lwork) */
 | 
						|
/* >          lwork must be at least f2cmax(1,6*N) when JOB = 'S' or 'B', and */
 | 
						|
/* >          at least 1 when JOB = 'N' or 'P'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit */
 | 
						|
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup realGBcomputational */
 | 
						|
 | 
						|
/* > \par Further Details: */
 | 
						|
/*  ===================== */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* >  See R.C. WARD, Balancing the generalized eigenvalue problem, */
 | 
						|
/* >                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void sggbal_(char *job, integer *n, real *a, integer *lda, 
 | 
						|
	real *b, integer *ldb, integer *ilo, integer *ihi, real *lscale, real 
 | 
						|
	*rscale, real *work, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
 | 
						|
    real r__1, r__2, r__3;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer lcab;
 | 
						|
    real beta, coef;
 | 
						|
    integer irab, lrab;
 | 
						|
    real basl, cmax;
 | 
						|
    extern real sdot_(integer *, real *, integer *, real *, integer *);
 | 
						|
    real coef2, coef5;
 | 
						|
    integer i__, j, k, l, m;
 | 
						|
    real gamma, t, alpha;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
 | 
						|
    real sfmin, sfmax;
 | 
						|
    integer iflow;
 | 
						|
    extern /* Subroutine */ void sswap_(integer *, real *, integer *, real *, 
 | 
						|
	    integer *);
 | 
						|
    integer kount;
 | 
						|
    extern /* Subroutine */ void saxpy_(integer *, real *, real *, integer *, 
 | 
						|
	    real *, integer *);
 | 
						|
    integer jc;
 | 
						|
    real ta, tb, tc;
 | 
						|
    integer ir, it;
 | 
						|
    real ew;
 | 
						|
    integer nr;
 | 
						|
    real pgamma;
 | 
						|
    extern real slamch_(char *);
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | 
						|
    extern integer isamax_(integer *, real *, integer *);
 | 
						|
    integer lsfmin, lsfmax, ip1, jp1, lm1;
 | 
						|
    real cab, rab, ewc, cor, sum;
 | 
						|
    integer nrp2, icab;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Test the input parameters */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1 * 1;
 | 
						|
    a -= a_offset;
 | 
						|
    b_dim1 = *ldb;
 | 
						|
    b_offset = 1 + b_dim1 * 1;
 | 
						|
    b -= b_offset;
 | 
						|
    --lscale;
 | 
						|
    --rscale;
 | 
						|
    --work;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S") 
 | 
						|
	    && ! lsame_(job, "B")) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*lda < f2cmax(1,*n)) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (*ldb < f2cmax(1,*n)) {
 | 
						|
	*info = -6;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("SGGBAL", &i__1, (ftnlen)6);
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n == 0) {
 | 
						|
	*ilo = 1;
 | 
						|
	*ihi = *n;
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*n == 1) {
 | 
						|
	*ilo = 1;
 | 
						|
	*ihi = *n;
 | 
						|
	lscale[1] = 1.f;
 | 
						|
	rscale[1] = 1.f;
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (lsame_(job, "N")) {
 | 
						|
	*ilo = 1;
 | 
						|
	*ihi = *n;
 | 
						|
	i__1 = *n;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	    lscale[i__] = 1.f;
 | 
						|
	    rscale[i__] = 1.f;
 | 
						|
/* L10: */
 | 
						|
	}
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
    k = 1;
 | 
						|
    l = *n;
 | 
						|
    if (lsame_(job, "S")) {
 | 
						|
	goto L190;
 | 
						|
    }
 | 
						|
 | 
						|
    goto L30;
 | 
						|
 | 
						|
/*     Permute the matrices A and B to isolate the eigenvalues. */
 | 
						|
 | 
						|
/*     Find row with one nonzero in columns 1 through L */
 | 
						|
 | 
						|
L20:
 | 
						|
    l = lm1;
 | 
						|
    if (l != 1) {
 | 
						|
	goto L30;
 | 
						|
    }
 | 
						|
 | 
						|
    rscale[1] = 1.f;
 | 
						|
    lscale[1] = 1.f;
 | 
						|
    goto L190;
 | 
						|
 | 
						|
L30:
 | 
						|
    lm1 = l - 1;
 | 
						|
    for (i__ = l; i__ >= 1; --i__) {
 | 
						|
	i__1 = lm1;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    jp1 = j + 1;
 | 
						|
	    if (a[i__ + j * a_dim1] != 0.f || b[i__ + j * b_dim1] != 0.f) {
 | 
						|
		goto L50;
 | 
						|
	    }
 | 
						|
/* L40: */
 | 
						|
	}
 | 
						|
	j = l;
 | 
						|
	goto L70;
 | 
						|
 | 
						|
L50:
 | 
						|
	i__1 = l;
 | 
						|
	for (j = jp1; j <= i__1; ++j) {
 | 
						|
	    if (a[i__ + j * a_dim1] != 0.f || b[i__ + j * b_dim1] != 0.f) {
 | 
						|
		goto L80;
 | 
						|
	    }
 | 
						|
/* L60: */
 | 
						|
	}
 | 
						|
	j = jp1 - 1;
 | 
						|
 | 
						|
L70:
 | 
						|
	m = l;
 | 
						|
	iflow = 1;
 | 
						|
	goto L160;
 | 
						|
L80:
 | 
						|
	;
 | 
						|
    }
 | 
						|
    goto L100;
 | 
						|
 | 
						|
/*     Find column with one nonzero in rows K through N */
 | 
						|
 | 
						|
L90:
 | 
						|
    ++k;
 | 
						|
 | 
						|
L100:
 | 
						|
    i__1 = l;
 | 
						|
    for (j = k; j <= i__1; ++j) {
 | 
						|
	i__2 = lm1;
 | 
						|
	for (i__ = k; i__ <= i__2; ++i__) {
 | 
						|
	    ip1 = i__ + 1;
 | 
						|
	    if (a[i__ + j * a_dim1] != 0.f || b[i__ + j * b_dim1] != 0.f) {
 | 
						|
		goto L120;
 | 
						|
	    }
 | 
						|
/* L110: */
 | 
						|
	}
 | 
						|
	i__ = l;
 | 
						|
	goto L140;
 | 
						|
L120:
 | 
						|
	i__2 = l;
 | 
						|
	for (i__ = ip1; i__ <= i__2; ++i__) {
 | 
						|
	    if (a[i__ + j * a_dim1] != 0.f || b[i__ + j * b_dim1] != 0.f) {
 | 
						|
		goto L150;
 | 
						|
	    }
 | 
						|
/* L130: */
 | 
						|
	}
 | 
						|
	i__ = ip1 - 1;
 | 
						|
L140:
 | 
						|
	m = k;
 | 
						|
	iflow = 2;
 | 
						|
	goto L160;
 | 
						|
L150:
 | 
						|
	;
 | 
						|
    }
 | 
						|
    goto L190;
 | 
						|
 | 
						|
/*     Permute rows M and I */
 | 
						|
 | 
						|
L160:
 | 
						|
    lscale[m] = (real) i__;
 | 
						|
    if (i__ == m) {
 | 
						|
	goto L170;
 | 
						|
    }
 | 
						|
    i__1 = *n - k + 1;
 | 
						|
    sswap_(&i__1, &a[i__ + k * a_dim1], lda, &a[m + k * a_dim1], lda);
 | 
						|
    i__1 = *n - k + 1;
 | 
						|
    sswap_(&i__1, &b[i__ + k * b_dim1], ldb, &b[m + k * b_dim1], ldb);
 | 
						|
 | 
						|
/*     Permute columns M and J */
 | 
						|
 | 
						|
L170:
 | 
						|
    rscale[m] = (real) j;
 | 
						|
    if (j == m) {
 | 
						|
	goto L180;
 | 
						|
    }
 | 
						|
    sswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
 | 
						|
    sswap_(&l, &b[j * b_dim1 + 1], &c__1, &b[m * b_dim1 + 1], &c__1);
 | 
						|
 | 
						|
L180:
 | 
						|
    switch (iflow) {
 | 
						|
	case 1:  goto L20;
 | 
						|
	case 2:  goto L90;
 | 
						|
    }
 | 
						|
 | 
						|
L190:
 | 
						|
    *ilo = k;
 | 
						|
    *ihi = l;
 | 
						|
 | 
						|
    if (lsame_(job, "P")) {
 | 
						|
	i__1 = *ihi;
 | 
						|
	for (i__ = *ilo; i__ <= i__1; ++i__) {
 | 
						|
	    lscale[i__] = 1.f;
 | 
						|
	    rscale[i__] = 1.f;
 | 
						|
/* L195: */
 | 
						|
	}
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*ilo == *ihi) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Balance the submatrix in rows ILO to IHI. */
 | 
						|
 | 
						|
    nr = *ihi - *ilo + 1;
 | 
						|
    i__1 = *ihi;
 | 
						|
    for (i__ = *ilo; i__ <= i__1; ++i__) {
 | 
						|
	rscale[i__] = 0.f;
 | 
						|
	lscale[i__] = 0.f;
 | 
						|
 | 
						|
	work[i__] = 0.f;
 | 
						|
	work[i__ + *n] = 0.f;
 | 
						|
	work[i__ + (*n << 1)] = 0.f;
 | 
						|
	work[i__ + *n * 3] = 0.f;
 | 
						|
	work[i__ + (*n << 2)] = 0.f;
 | 
						|
	work[i__ + *n * 5] = 0.f;
 | 
						|
/* L200: */
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute right side vector in resulting linear equations */
 | 
						|
 | 
						|
    basl = r_lg10(&c_b35);
 | 
						|
    i__1 = *ihi;
 | 
						|
    for (i__ = *ilo; i__ <= i__1; ++i__) {
 | 
						|
	i__2 = *ihi;
 | 
						|
	for (j = *ilo; j <= i__2; ++j) {
 | 
						|
	    tb = b[i__ + j * b_dim1];
 | 
						|
	    ta = a[i__ + j * a_dim1];
 | 
						|
	    if (ta == 0.f) {
 | 
						|
		goto L210;
 | 
						|
	    }
 | 
						|
	    r__1 = abs(ta);
 | 
						|
	    ta = r_lg10(&r__1) / basl;
 | 
						|
L210:
 | 
						|
	    if (tb == 0.f) {
 | 
						|
		goto L220;
 | 
						|
	    }
 | 
						|
	    r__1 = abs(tb);
 | 
						|
	    tb = r_lg10(&r__1) / basl;
 | 
						|
L220:
 | 
						|
	    work[i__ + (*n << 2)] = work[i__ + (*n << 2)] - ta - tb;
 | 
						|
	    work[j + *n * 5] = work[j + *n * 5] - ta - tb;
 | 
						|
/* L230: */
 | 
						|
	}
 | 
						|
/* L240: */
 | 
						|
    }
 | 
						|
 | 
						|
    coef = 1.f / (real) (nr << 1);
 | 
						|
    coef2 = coef * coef;
 | 
						|
    coef5 = coef2 * .5f;
 | 
						|
    nrp2 = nr + 2;
 | 
						|
    beta = 0.f;
 | 
						|
    it = 1;
 | 
						|
 | 
						|
/*     Start generalized conjugate gradient iteration */
 | 
						|
 | 
						|
L250:
 | 
						|
 | 
						|
    gamma = sdot_(&nr, &work[*ilo + (*n << 2)], &c__1, &work[*ilo + (*n << 2)]
 | 
						|
	    , &c__1) + sdot_(&nr, &work[*ilo + *n * 5], &c__1, &work[*ilo + *
 | 
						|
	    n * 5], &c__1);
 | 
						|
 | 
						|
    ew = 0.f;
 | 
						|
    ewc = 0.f;
 | 
						|
    i__1 = *ihi;
 | 
						|
    for (i__ = *ilo; i__ <= i__1; ++i__) {
 | 
						|
	ew += work[i__ + (*n << 2)];
 | 
						|
	ewc += work[i__ + *n * 5];
 | 
						|
/* L260: */
 | 
						|
    }
 | 
						|
 | 
						|
/* Computing 2nd power */
 | 
						|
    r__1 = ew;
 | 
						|
/* Computing 2nd power */
 | 
						|
    r__2 = ewc;
 | 
						|
/* Computing 2nd power */
 | 
						|
    r__3 = ew - ewc;
 | 
						|
    gamma = coef * gamma - coef2 * (r__1 * r__1 + r__2 * r__2) - coef5 * (
 | 
						|
	    r__3 * r__3);
 | 
						|
    if (gamma == 0.f) {
 | 
						|
	goto L350;
 | 
						|
    }
 | 
						|
    if (it != 1) {
 | 
						|
	beta = gamma / pgamma;
 | 
						|
    }
 | 
						|
    t = coef5 * (ewc - ew * 3.f);
 | 
						|
    tc = coef5 * (ew - ewc * 3.f);
 | 
						|
 | 
						|
    sscal_(&nr, &beta, &work[*ilo], &c__1);
 | 
						|
    sscal_(&nr, &beta, &work[*ilo + *n], &c__1);
 | 
						|
 | 
						|
    saxpy_(&nr, &coef, &work[*ilo + (*n << 2)], &c__1, &work[*ilo + *n], &
 | 
						|
	    c__1);
 | 
						|
    saxpy_(&nr, &coef, &work[*ilo + *n * 5], &c__1, &work[*ilo], &c__1);
 | 
						|
 | 
						|
    i__1 = *ihi;
 | 
						|
    for (i__ = *ilo; i__ <= i__1; ++i__) {
 | 
						|
	work[i__] += tc;
 | 
						|
	work[i__ + *n] += t;
 | 
						|
/* L270: */
 | 
						|
    }
 | 
						|
 | 
						|
/*     Apply matrix to vector */
 | 
						|
 | 
						|
    i__1 = *ihi;
 | 
						|
    for (i__ = *ilo; i__ <= i__1; ++i__) {
 | 
						|
	kount = 0;
 | 
						|
	sum = 0.f;
 | 
						|
	i__2 = *ihi;
 | 
						|
	for (j = *ilo; j <= i__2; ++j) {
 | 
						|
	    if (a[i__ + j * a_dim1] == 0.f) {
 | 
						|
		goto L280;
 | 
						|
	    }
 | 
						|
	    ++kount;
 | 
						|
	    sum += work[j];
 | 
						|
L280:
 | 
						|
	    if (b[i__ + j * b_dim1] == 0.f) {
 | 
						|
		goto L290;
 | 
						|
	    }
 | 
						|
	    ++kount;
 | 
						|
	    sum += work[j];
 | 
						|
L290:
 | 
						|
	    ;
 | 
						|
	}
 | 
						|
	work[i__ + (*n << 1)] = (real) kount * work[i__ + *n] + sum;
 | 
						|
/* L300: */
 | 
						|
    }
 | 
						|
 | 
						|
    i__1 = *ihi;
 | 
						|
    for (j = *ilo; j <= i__1; ++j) {
 | 
						|
	kount = 0;
 | 
						|
	sum = 0.f;
 | 
						|
	i__2 = *ihi;
 | 
						|
	for (i__ = *ilo; i__ <= i__2; ++i__) {
 | 
						|
	    if (a[i__ + j * a_dim1] == 0.f) {
 | 
						|
		goto L310;
 | 
						|
	    }
 | 
						|
	    ++kount;
 | 
						|
	    sum += work[i__ + *n];
 | 
						|
L310:
 | 
						|
	    if (b[i__ + j * b_dim1] == 0.f) {
 | 
						|
		goto L320;
 | 
						|
	    }
 | 
						|
	    ++kount;
 | 
						|
	    sum += work[i__ + *n];
 | 
						|
L320:
 | 
						|
	    ;
 | 
						|
	}
 | 
						|
	work[j + *n * 3] = (real) kount * work[j] + sum;
 | 
						|
/* L330: */
 | 
						|
    }
 | 
						|
 | 
						|
    sum = sdot_(&nr, &work[*ilo + *n], &c__1, &work[*ilo + (*n << 1)], &c__1) 
 | 
						|
	    + sdot_(&nr, &work[*ilo], &c__1, &work[*ilo + *n * 3], &c__1);
 | 
						|
    alpha = gamma / sum;
 | 
						|
 | 
						|
/*     Determine correction to current iteration */
 | 
						|
 | 
						|
    cmax = 0.f;
 | 
						|
    i__1 = *ihi;
 | 
						|
    for (i__ = *ilo; i__ <= i__1; ++i__) {
 | 
						|
	cor = alpha * work[i__ + *n];
 | 
						|
	if (abs(cor) > cmax) {
 | 
						|
	    cmax = abs(cor);
 | 
						|
	}
 | 
						|
	lscale[i__] += cor;
 | 
						|
	cor = alpha * work[i__];
 | 
						|
	if (abs(cor) > cmax) {
 | 
						|
	    cmax = abs(cor);
 | 
						|
	}
 | 
						|
	rscale[i__] += cor;
 | 
						|
/* L340: */
 | 
						|
    }
 | 
						|
    if (cmax < .5f) {
 | 
						|
	goto L350;
 | 
						|
    }
 | 
						|
 | 
						|
    r__1 = -alpha;
 | 
						|
    saxpy_(&nr, &r__1, &work[*ilo + (*n << 1)], &c__1, &work[*ilo + (*n << 2)]
 | 
						|
	    , &c__1);
 | 
						|
    r__1 = -alpha;
 | 
						|
    saxpy_(&nr, &r__1, &work[*ilo + *n * 3], &c__1, &work[*ilo + *n * 5], &
 | 
						|
	    c__1);
 | 
						|
 | 
						|
    pgamma = gamma;
 | 
						|
    ++it;
 | 
						|
    if (it <= nrp2) {
 | 
						|
	goto L250;
 | 
						|
    }
 | 
						|
 | 
						|
/*     End generalized conjugate gradient iteration */
 | 
						|
 | 
						|
L350:
 | 
						|
    sfmin = slamch_("S");
 | 
						|
    sfmax = 1.f / sfmin;
 | 
						|
    lsfmin = (integer) (r_lg10(&sfmin) / basl + 1.f);
 | 
						|
    lsfmax = (integer) (r_lg10(&sfmax) / basl);
 | 
						|
    i__1 = *ihi;
 | 
						|
    for (i__ = *ilo; i__ <= i__1; ++i__) {
 | 
						|
	i__2 = *n - *ilo + 1;
 | 
						|
	irab = isamax_(&i__2, &a[i__ + *ilo * a_dim1], lda);
 | 
						|
	rab = (r__1 = a[i__ + (irab + *ilo - 1) * a_dim1], abs(r__1));
 | 
						|
	i__2 = *n - *ilo + 1;
 | 
						|
	irab = isamax_(&i__2, &b[i__ + *ilo * b_dim1], ldb);
 | 
						|
/* Computing MAX */
 | 
						|
	r__2 = rab, r__3 = (r__1 = b[i__ + (irab + *ilo - 1) * b_dim1], abs(
 | 
						|
		r__1));
 | 
						|
	rab = f2cmax(r__2,r__3);
 | 
						|
	r__1 = rab + sfmin;
 | 
						|
	lrab = (integer) (r_lg10(&r__1) / basl + 1.f);
 | 
						|
	ir = lscale[i__] + r_sign(&c_b71, &lscale[i__]);
 | 
						|
/* Computing MIN */
 | 
						|
	i__2 = f2cmax(ir,lsfmin), i__2 = f2cmin(i__2,lsfmax), i__3 = lsfmax - lrab;
 | 
						|
	ir = f2cmin(i__2,i__3);
 | 
						|
	lscale[i__] = pow_ri(&c_b35, &ir);
 | 
						|
	icab = isamax_(ihi, &a[i__ * a_dim1 + 1], &c__1);
 | 
						|
	cab = (r__1 = a[icab + i__ * a_dim1], abs(r__1));
 | 
						|
	icab = isamax_(ihi, &b[i__ * b_dim1 + 1], &c__1);
 | 
						|
/* Computing MAX */
 | 
						|
	r__2 = cab, r__3 = (r__1 = b[icab + i__ * b_dim1], abs(r__1));
 | 
						|
	cab = f2cmax(r__2,r__3);
 | 
						|
	r__1 = cab + sfmin;
 | 
						|
	lcab = (integer) (r_lg10(&r__1) / basl + 1.f);
 | 
						|
	jc = rscale[i__] + r_sign(&c_b71, &rscale[i__]);
 | 
						|
/* Computing MIN */
 | 
						|
	i__2 = f2cmax(jc,lsfmin), i__2 = f2cmin(i__2,lsfmax), i__3 = lsfmax - lcab;
 | 
						|
	jc = f2cmin(i__2,i__3);
 | 
						|
	rscale[i__] = pow_ri(&c_b35, &jc);
 | 
						|
/* L360: */
 | 
						|
    }
 | 
						|
 | 
						|
/*     Row scaling of matrices A and B */
 | 
						|
 | 
						|
    i__1 = *ihi;
 | 
						|
    for (i__ = *ilo; i__ <= i__1; ++i__) {
 | 
						|
	i__2 = *n - *ilo + 1;
 | 
						|
	sscal_(&i__2, &lscale[i__], &a[i__ + *ilo * a_dim1], lda);
 | 
						|
	i__2 = *n - *ilo + 1;
 | 
						|
	sscal_(&i__2, &lscale[i__], &b[i__ + *ilo * b_dim1], ldb);
 | 
						|
/* L370: */
 | 
						|
    }
 | 
						|
 | 
						|
/*     Column scaling of matrices A and B */
 | 
						|
 | 
						|
    i__1 = *ihi;
 | 
						|
    for (j = *ilo; j <= i__1; ++j) {
 | 
						|
	sscal_(ihi, &rscale[j], &a[j * a_dim1 + 1], &c__1);
 | 
						|
	sscal_(ihi, &rscale[j], &b[j * b_dim1 + 1], &c__1);
 | 
						|
/* L380: */
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of SGGBAL */
 | 
						|
 | 
						|
} /* sggbal_ */
 | 
						|
 |