384 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			384 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLAGTS solves the system of equations (T-λI)x = y or (T-λI)Tx = y,where T is a general tridiagonal matrix and λ a scalar, using the LU factorization computed by slagtf.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLAGTS + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlagts.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlagts.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlagts.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLAGTS( JOB, N, A, B, C, D, IN, Y, TOL, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, JOB, N
 | |
| *       DOUBLE PRECISION   TOL
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IN( * )
 | |
| *       DOUBLE PRECISION   A( * ), B( * ), C( * ), D( * ), Y( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLAGTS may be used to solve one of the systems of equations
 | |
| *>
 | |
| *>    (T - lambda*I)*x = y   or   (T - lambda*I)**T*x = y,
 | |
| *>
 | |
| *> where T is an n by n tridiagonal matrix, for x, following the
 | |
| *> factorization of (T - lambda*I) as
 | |
| *>
 | |
| *>    (T - lambda*I) = P*L*U ,
 | |
| *>
 | |
| *> by routine DLAGTF. The choice of equation to be solved is
 | |
| *> controlled by the argument JOB, and in each case there is an option
 | |
| *> to perturb zero or very small diagonal elements of U, this option
 | |
| *> being intended for use in applications such as inverse iteration.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOB
 | |
| *> \verbatim
 | |
| *>          JOB is INTEGER
 | |
| *>          Specifies the job to be performed by DLAGTS as follows:
 | |
| *>          =  1: The equations  (T - lambda*I)x = y  are to be solved,
 | |
| *>                but diagonal elements of U are not to be perturbed.
 | |
| *>          = -1: The equations  (T - lambda*I)x = y  are to be solved
 | |
| *>                and, if overflow would otherwise occur, the diagonal
 | |
| *>                elements of U are to be perturbed. See argument TOL
 | |
| *>                below.
 | |
| *>          =  2: The equations  (T - lambda*I)**Tx = y  are to be solved,
 | |
| *>                but diagonal elements of U are not to be perturbed.
 | |
| *>          = -2: The equations  (T - lambda*I)**Tx = y  are to be solved
 | |
| *>                and, if overflow would otherwise occur, the diagonal
 | |
| *>                elements of U are to be perturbed. See argument TOL
 | |
| *>                below.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On entry, A must contain the diagonal elements of U as
 | |
| *>          returned from DLAGTF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          On entry, B must contain the first super-diagonal elements of
 | |
| *>          U as returned from DLAGTF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] C
 | |
| *> \verbatim
 | |
| *>          C is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          On entry, C must contain the sub-diagonal elements of L as
 | |
| *>          returned from DLAGTF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N-2)
 | |
| *>          On entry, D must contain the second super-diagonal elements
 | |
| *>          of U as returned from DLAGTF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IN
 | |
| *> \verbatim
 | |
| *>          IN is INTEGER array, dimension (N)
 | |
| *>          On entry, IN must contain details of the matrix P as returned
 | |
| *>          from DLAGTF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Y
 | |
| *> \verbatim
 | |
| *>          Y is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On entry, the right hand side vector y.
 | |
| *>          On exit, Y is overwritten by the solution vector x.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] TOL
 | |
| *> \verbatim
 | |
| *>          TOL is DOUBLE PRECISION
 | |
| *>          On entry, with  JOB .lt. 0, TOL should be the minimum
 | |
| *>          perturbation to be made to very small diagonal elements of U.
 | |
| *>          TOL should normally be chosen as about eps*norm(U), where eps
 | |
| *>          is the relative machine precision, but if TOL is supplied as
 | |
| *>          non-positive, then it is reset to eps*max( abs( u(i,j) ) ).
 | |
| *>          If  JOB .gt. 0  then TOL is not referenced.
 | |
| *>
 | |
| *>          On exit, TOL is changed as described above, only if TOL is
 | |
| *>          non-positive on entry. Otherwise TOL is unchanged.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0   : successful exit
 | |
| *>          .lt. 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *>          .gt. 0: overflow would occur when computing the INFO(th)
 | |
| *>                  element of the solution vector x. This can only occur
 | |
| *>                  when JOB is supplied as positive and either means
 | |
| *>                  that a diagonal element of U is very small, or that
 | |
| *>                  the elements of the right-hand side vector y are very
 | |
| *>                  large.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup auxOTHERauxiliary
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLAGTS( JOB, N, A, B, C, D, IN, Y, TOL, INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, JOB, N
 | |
|       DOUBLE PRECISION   TOL
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IN( * )
 | |
|       DOUBLE PRECISION   A( * ), B( * ), C( * ), D( * ), Y( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            K
 | |
|       DOUBLE PRECISION   ABSAK, AK, BIGNUM, EPS, PERT, SFMIN, TEMP
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, SIGN
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           DLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( ( ABS( JOB ).GT.2 ) .OR. ( JOB.EQ.0 ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DLAGTS', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       SFMIN = DLAMCH( 'Safe minimum' )
 | |
|       BIGNUM = ONE / SFMIN
 | |
| *
 | |
|       IF( JOB.LT.0 ) THEN
 | |
|          IF( TOL.LE.ZERO ) THEN
 | |
|             TOL = ABS( A( 1 ) )
 | |
|             IF( N.GT.1 )
 | |
|      $         TOL = MAX( TOL, ABS( A( 2 ) ), ABS( B( 1 ) ) )
 | |
|             DO 10 K = 3, N
 | |
|                TOL = MAX( TOL, ABS( A( K ) ), ABS( B( K-1 ) ),
 | |
|      $               ABS( D( K-2 ) ) )
 | |
|    10       CONTINUE
 | |
|             TOL = TOL*EPS
 | |
|             IF( TOL.EQ.ZERO )
 | |
|      $         TOL = EPS
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( ABS( JOB ).EQ.1 ) THEN
 | |
|          DO 20 K = 2, N
 | |
|             IF( IN( K-1 ).EQ.0 ) THEN
 | |
|                Y( K ) = Y( K ) - C( K-1 )*Y( K-1 )
 | |
|             ELSE
 | |
|                TEMP = Y( K-1 )
 | |
|                Y( K-1 ) = Y( K )
 | |
|                Y( K ) = TEMP - C( K-1 )*Y( K )
 | |
|             END IF
 | |
|    20    CONTINUE
 | |
|          IF( JOB.EQ.1 ) THEN
 | |
|             DO 30 K = N, 1, -1
 | |
|                IF( K.LE.N-2 ) THEN
 | |
|                   TEMP = Y( K ) - B( K )*Y( K+1 ) - D( K )*Y( K+2 )
 | |
|                ELSE IF( K.EQ.N-1 ) THEN
 | |
|                   TEMP = Y( K ) - B( K )*Y( K+1 )
 | |
|                ELSE
 | |
|                   TEMP = Y( K )
 | |
|                END IF
 | |
|                AK = A( K )
 | |
|                ABSAK = ABS( AK )
 | |
|                IF( ABSAK.LT.ONE ) THEN
 | |
|                   IF( ABSAK.LT.SFMIN ) THEN
 | |
|                      IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
 | |
|      $                    THEN
 | |
|                         INFO = K
 | |
|                         RETURN
 | |
|                      ELSE
 | |
|                         TEMP = TEMP*BIGNUM
 | |
|                         AK = AK*BIGNUM
 | |
|                      END IF
 | |
|                   ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
 | |
|                      INFO = K
 | |
|                      RETURN
 | |
|                   END IF
 | |
|                END IF
 | |
|                Y( K ) = TEMP / AK
 | |
|    30       CONTINUE
 | |
|          ELSE
 | |
|             DO 50 K = N, 1, -1
 | |
|                IF( K.LE.N-2 ) THEN
 | |
|                   TEMP = Y( K ) - B( K )*Y( K+1 ) - D( K )*Y( K+2 )
 | |
|                ELSE IF( K.EQ.N-1 ) THEN
 | |
|                   TEMP = Y( K ) - B( K )*Y( K+1 )
 | |
|                ELSE
 | |
|                   TEMP = Y( K )
 | |
|                END IF
 | |
|                AK = A( K )
 | |
|                PERT = SIGN( TOL, AK )
 | |
|    40          CONTINUE
 | |
|                ABSAK = ABS( AK )
 | |
|                IF( ABSAK.LT.ONE ) THEN
 | |
|                   IF( ABSAK.LT.SFMIN ) THEN
 | |
|                      IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
 | |
|      $                    THEN
 | |
|                         AK = AK + PERT
 | |
|                         PERT = 2*PERT
 | |
|                         GO TO 40
 | |
|                      ELSE
 | |
|                         TEMP = TEMP*BIGNUM
 | |
|                         AK = AK*BIGNUM
 | |
|                      END IF
 | |
|                   ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
 | |
|                      AK = AK + PERT
 | |
|                      PERT = 2*PERT
 | |
|                      GO TO 40
 | |
|                   END IF
 | |
|                END IF
 | |
|                Y( K ) = TEMP / AK
 | |
|    50       CONTINUE
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Come to here if  JOB = 2 or -2
 | |
| *
 | |
|          IF( JOB.EQ.2 ) THEN
 | |
|             DO 60 K = 1, N
 | |
|                IF( K.GE.3 ) THEN
 | |
|                   TEMP = Y( K ) - B( K-1 )*Y( K-1 ) - D( K-2 )*Y( K-2 )
 | |
|                ELSE IF( K.EQ.2 ) THEN
 | |
|                   TEMP = Y( K ) - B( K-1 )*Y( K-1 )
 | |
|                ELSE
 | |
|                   TEMP = Y( K )
 | |
|                END IF
 | |
|                AK = A( K )
 | |
|                ABSAK = ABS( AK )
 | |
|                IF( ABSAK.LT.ONE ) THEN
 | |
|                   IF( ABSAK.LT.SFMIN ) THEN
 | |
|                      IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
 | |
|      $                    THEN
 | |
|                         INFO = K
 | |
|                         RETURN
 | |
|                      ELSE
 | |
|                         TEMP = TEMP*BIGNUM
 | |
|                         AK = AK*BIGNUM
 | |
|                      END IF
 | |
|                   ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
 | |
|                      INFO = K
 | |
|                      RETURN
 | |
|                   END IF
 | |
|                END IF
 | |
|                Y( K ) = TEMP / AK
 | |
|    60       CONTINUE
 | |
|          ELSE
 | |
|             DO 80 K = 1, N
 | |
|                IF( K.GE.3 ) THEN
 | |
|                   TEMP = Y( K ) - B( K-1 )*Y( K-1 ) - D( K-2 )*Y( K-2 )
 | |
|                ELSE IF( K.EQ.2 ) THEN
 | |
|                   TEMP = Y( K ) - B( K-1 )*Y( K-1 )
 | |
|                ELSE
 | |
|                   TEMP = Y( K )
 | |
|                END IF
 | |
|                AK = A( K )
 | |
|                PERT = SIGN( TOL, AK )
 | |
|    70          CONTINUE
 | |
|                ABSAK = ABS( AK )
 | |
|                IF( ABSAK.LT.ONE ) THEN
 | |
|                   IF( ABSAK.LT.SFMIN ) THEN
 | |
|                      IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
 | |
|      $                    THEN
 | |
|                         AK = AK + PERT
 | |
|                         PERT = 2*PERT
 | |
|                         GO TO 70
 | |
|                      ELSE
 | |
|                         TEMP = TEMP*BIGNUM
 | |
|                         AK = AK*BIGNUM
 | |
|                      END IF
 | |
|                   ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
 | |
|                      AK = AK + PERT
 | |
|                      PERT = 2*PERT
 | |
|                      GO TO 70
 | |
|                   END IF
 | |
|                END IF
 | |
|                Y( K ) = TEMP / AK
 | |
|    80       CONTINUE
 | |
|          END IF
 | |
| *
 | |
|          DO 90 K = N, 2, -1
 | |
|             IF( IN( K-1 ).EQ.0 ) THEN
 | |
|                Y( K-1 ) = Y( K-1 ) - C( K-1 )*Y( K )
 | |
|             ELSE
 | |
|                TEMP = Y( K-1 )
 | |
|                Y( K-1 ) = Y( K )
 | |
|                Y( K ) = TEMP - C( K-1 )*Y( K )
 | |
|             END IF
 | |
|    90    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     End of DLAGTS
 | |
| *
 | |
|       END
 |