615 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			615 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle_() continue;
 | 
						|
#define myceiling_(w) {ceil(w)}
 | 
						|
#define myhuge_(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* > \brief \b ZLATM2 */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       COMPLEX*16   FUNCTION ZLATM2( M, N, I, J, KL, KU, IDIST, */
 | 
						|
/*                        ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK, SPARSE ) */
 | 
						|
 | 
						|
 | 
						|
/*       INTEGER            I, IDIST, IGRADE, IPVTNG, J, KL, KU, M, N */
 | 
						|
/*       DOUBLE PRECISION   SPARSE */
 | 
						|
 | 
						|
 | 
						|
/*       INTEGER            ISEED( 4 ), IWORK( * ) */
 | 
						|
/*       COMPLEX*16         D( * ), DL( * ), DR( * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* >    ZLATM2 returns the (I,J) entry of a random matrix of dimension */
 | 
						|
/* >    (M, N) described by the other parameters. It is called by the */
 | 
						|
/* >    ZLATMR routine in order to build random test matrices. No error */
 | 
						|
/* >    checking on parameters is done, because this routine is called in */
 | 
						|
/* >    a tight loop by ZLATMR which has already checked the parameters. */
 | 
						|
/* > */
 | 
						|
/* >    Use of ZLATM2 differs from CLATM3 in the order in which the random */
 | 
						|
/* >    number generator is called to fill in random matrix entries. */
 | 
						|
/* >    With ZLATM2, the generator is called to fill in the pivoted matrix */
 | 
						|
/* >    columnwise. With ZLATM3, the generator is called to fill in the */
 | 
						|
/* >    matrix columnwise, after which it is pivoted. Thus, ZLATM3 can */
 | 
						|
/* >    be used to construct random matrices which differ only in their */
 | 
						|
/* >    order of rows and/or columns. ZLATM2 is used to construct band */
 | 
						|
/* >    matrices while avoiding calling the random number generator for */
 | 
						|
/* >    entries outside the band (and therefore generating random numbers */
 | 
						|
/* > */
 | 
						|
/* >    The matrix whose (I,J) entry is returned is constructed as */
 | 
						|
/* >    follows (this routine only computes one entry): */
 | 
						|
/* > */
 | 
						|
/* >      If I is outside (1..M) or J is outside (1..N), return zero */
 | 
						|
/* >         (this is convenient for generating matrices in band format). */
 | 
						|
/* > */
 | 
						|
/* >      Generate a matrix A with random entries of distribution IDIST. */
 | 
						|
/* > */
 | 
						|
/* >      Set the diagonal to D. */
 | 
						|
/* > */
 | 
						|
/* >      Grade the matrix, if desired, from the left (by DL) and/or */
 | 
						|
/* >         from the right (by DR or DL) as specified by IGRADE. */
 | 
						|
/* > */
 | 
						|
/* >      Permute, if desired, the rows and/or columns as specified by */
 | 
						|
/* >         IPVTNG and IWORK. */
 | 
						|
/* > */
 | 
						|
/* >      Band the matrix to have lower bandwidth KL and upper */
 | 
						|
/* >         bandwidth KU. */
 | 
						|
/* > */
 | 
						|
/* >      Set random entries to zero as specified by SPARSE. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] M */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          M is INTEGER */
 | 
						|
/* >           Number of rows of matrix. Not modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >           Number of columns of matrix. Not modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] I */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          I is INTEGER */
 | 
						|
/* >           Row of entry to be returned. Not modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] J */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          J is INTEGER */
 | 
						|
/* >           Column of entry to be returned. Not modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] KL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          KL is INTEGER */
 | 
						|
/* >           Lower bandwidth. Not modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] KU */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          KU is INTEGER */
 | 
						|
/* >           Upper bandwidth. Not modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] IDIST */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IDIST is INTEGER */
 | 
						|
/* >           On entry, IDIST specifies the type of distribution to be */
 | 
						|
/* >           used to generate a random matrix . */
 | 
						|
/* >           1 => real and imaginary parts each UNIFORM( 0, 1 ) */
 | 
						|
/* >           2 => real and imaginary parts each UNIFORM( -1, 1 ) */
 | 
						|
/* >           3 => real and imaginary parts each NORMAL( 0, 1 ) */
 | 
						|
/* >           4 => complex number uniform in DISK( 0 , 1 ) */
 | 
						|
/* >           Not modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] ISEED */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ISEED is INTEGER array of dimension ( 4 ) */
 | 
						|
/* >           Seed for random number generator. */
 | 
						|
/* >           Changed on exit. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] D */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          D is COMPLEX*16 array of dimension ( MIN( I , J ) ) */
 | 
						|
/* >           Diagonal entries of matrix. Not modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] IGRADE */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IGRADE is INTEGER */
 | 
						|
/* >           Specifies grading of matrix as follows: */
 | 
						|
/* >           0  => no grading */
 | 
						|
/* >           1  => matrix premultiplied by diag( DL ) */
 | 
						|
/* >           2  => matrix postmultiplied by diag( DR ) */
 | 
						|
/* >           3  => matrix premultiplied by diag( DL ) and */
 | 
						|
/* >                         postmultiplied by diag( DR ) */
 | 
						|
/* >           4  => matrix premultiplied by diag( DL ) and */
 | 
						|
/* >                         postmultiplied by inv( diag( DL ) ) */
 | 
						|
/* >           5  => matrix premultiplied by diag( DL ) and */
 | 
						|
/* >                         postmultiplied by diag( CONJG(DL) ) */
 | 
						|
/* >           6  => matrix premultiplied by diag( DL ) and */
 | 
						|
/* >                         postmultiplied by diag( DL ) */
 | 
						|
/* >           Not modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] DL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          DL is COMPLEX*16 array ( I or J, as appropriate ) */
 | 
						|
/* >           Left scale factors for grading matrix.  Not modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] DR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          DR is COMPLEX*16 array ( I or J, as appropriate ) */
 | 
						|
/* >           Right scale factors for grading matrix.  Not modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] IPVTNG */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IPVTNG is INTEGER */
 | 
						|
/* >           On entry specifies pivoting permutations as follows: */
 | 
						|
/* >           0 => none. */
 | 
						|
/* >           1 => row pivoting. */
 | 
						|
/* >           2 => column pivoting. */
 | 
						|
/* >           3 => full pivoting, i.e., on both sides. */
 | 
						|
/* >           Not modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] IWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IWORK is INTEGER array ( I or J, as appropriate ) */
 | 
						|
/* >           This array specifies the permutation used. The */
 | 
						|
/* >           row (or column) in position K was originally in */
 | 
						|
/* >           position IWORK( K ). */
 | 
						|
/* >           This differs from IWORK for ZLATM3. Not modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] SPARSE */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          SPARSE is DOUBLE PRECISION between 0. and 1. */
 | 
						|
/* >           On entry specifies the sparsity of the matrix */
 | 
						|
/* >           if sparse matrix is to be generated. */
 | 
						|
/* >           SPARSE should lie between 0 and 1. */
 | 
						|
/* >           A uniform ( 0, 1 ) random number x is generated and */
 | 
						|
/* >           compared to SPARSE; if x is larger the matrix entry */
 | 
						|
/* >           is unchanged and if x is smaller the entry is set */
 | 
						|
/* >           to zero. Thus on the average a fraction SPARSE of the */
 | 
						|
/* >           entries will be set to zero. */
 | 
						|
/* >           Not modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date June 2016 */
 | 
						|
 | 
						|
/* > \ingroup complex16_matgen */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Double Complex */ VOID zlatm2_(doublecomplex * ret_val, integer *m, 
 | 
						|
	integer *n, integer *i__, integer *j, integer *kl, integer *ku, 
 | 
						|
	integer *idist, integer *iseed, doublecomplex *d__, integer *igrade, 
 | 
						|
	doublecomplex *dl, doublecomplex *dr, integer *ipvtng, integer *iwork,
 | 
						|
	 doublereal *sparse)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer i__1, i__2;
 | 
						|
    doublecomplex z__1, z__2, z__3;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer isub, jsub;
 | 
						|
    doublecomplex ctemp;
 | 
						|
    extern doublereal dlaran_(integer *);
 | 
						|
    //extern /* Double Complex */ VOID zlarnd_(doublecomplex *, integer *, 
 | 
						|
    extern doublecomplex zlarnd_(integer *, 
 | 
						|
	    integer *);
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     June 2016 */
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* ----------------------------------------------------------------------- */
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*     Check for I and J in range */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --iwork;
 | 
						|
    --dr;
 | 
						|
    --dl;
 | 
						|
    --d__;
 | 
						|
    --iseed;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    if (*i__ < 1 || *i__ > *m || *j < 1 || *j > *n) {
 | 
						|
	 ret_val->r = 0.,  ret_val->i = 0.;
 | 
						|
	return ;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Check for banding */
 | 
						|
 | 
						|
    if (*j > *i__ + *ku || *j < *i__ - *kl) {
 | 
						|
	 ret_val->r = 0.,  ret_val->i = 0.;
 | 
						|
	return ;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Check for sparsity */
 | 
						|
 | 
						|
    if (*sparse > 0.) {
 | 
						|
	if (dlaran_(&iseed[1]) < *sparse) {
 | 
						|
	     ret_val->r = 0.,  ret_val->i = 0.;
 | 
						|
	    return ;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute subscripts depending on IPVTNG */
 | 
						|
 | 
						|
    if (*ipvtng == 0) {
 | 
						|
	isub = *i__;
 | 
						|
	jsub = *j;
 | 
						|
    } else if (*ipvtng == 1) {
 | 
						|
	isub = iwork[*i__];
 | 
						|
	jsub = *j;
 | 
						|
    } else if (*ipvtng == 2) {
 | 
						|
	isub = *i__;
 | 
						|
	jsub = iwork[*j];
 | 
						|
    } else if (*ipvtng == 3) {
 | 
						|
	isub = iwork[*i__];
 | 
						|
	jsub = iwork[*j];
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute entry and grade it according to IGRADE */
 | 
						|
 | 
						|
    if (isub == jsub) {
 | 
						|
	i__1 = isub;
 | 
						|
	ctemp.r = d__[i__1].r, ctemp.i = d__[i__1].i;
 | 
						|
    } else {
 | 
						|
	//zlarnd_(&z__1, idist, &iseed[1]);
 | 
						|
	z__1=zlarnd_(idist, &iseed[1]);
 | 
						|
	ctemp.r = z__1.r, ctemp.i = z__1.i;
 | 
						|
    }
 | 
						|
    if (*igrade == 1) {
 | 
						|
	i__1 = isub;
 | 
						|
	z__1.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, z__1.i = 
 | 
						|
		ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r;
 | 
						|
	ctemp.r = z__1.r, ctemp.i = z__1.i;
 | 
						|
    } else if (*igrade == 2) {
 | 
						|
	i__1 = jsub;
 | 
						|
	z__1.r = ctemp.r * dr[i__1].r - ctemp.i * dr[i__1].i, z__1.i = 
 | 
						|
		ctemp.r * dr[i__1].i + ctemp.i * dr[i__1].r;
 | 
						|
	ctemp.r = z__1.r, ctemp.i = z__1.i;
 | 
						|
    } else if (*igrade == 3) {
 | 
						|
	i__1 = isub;
 | 
						|
	z__2.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, z__2.i = 
 | 
						|
		ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r;
 | 
						|
	i__2 = jsub;
 | 
						|
	z__1.r = z__2.r * dr[i__2].r - z__2.i * dr[i__2].i, z__1.i = z__2.r * 
 | 
						|
		dr[i__2].i + z__2.i * dr[i__2].r;
 | 
						|
	ctemp.r = z__1.r, ctemp.i = z__1.i;
 | 
						|
    } else if (*igrade == 4 && isub != jsub) {
 | 
						|
	i__1 = isub;
 | 
						|
	z__2.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, z__2.i = 
 | 
						|
		ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r;
 | 
						|
	z_div(&z__1, &z__2, &dl[jsub]);
 | 
						|
	ctemp.r = z__1.r, ctemp.i = z__1.i;
 | 
						|
    } else if (*igrade == 5) {
 | 
						|
	i__1 = isub;
 | 
						|
	z__2.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, z__2.i = 
 | 
						|
		ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r;
 | 
						|
	d_cnjg(&z__3, &dl[jsub]);
 | 
						|
	z__1.r = z__2.r * z__3.r - z__2.i * z__3.i, z__1.i = z__2.r * z__3.i 
 | 
						|
		+ z__2.i * z__3.r;
 | 
						|
	ctemp.r = z__1.r, ctemp.i = z__1.i;
 | 
						|
    } else if (*igrade == 6) {
 | 
						|
	i__1 = isub;
 | 
						|
	z__2.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, z__2.i = 
 | 
						|
		ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r;
 | 
						|
	i__2 = jsub;
 | 
						|
	z__1.r = z__2.r * dl[i__2].r - z__2.i * dl[i__2].i, z__1.i = z__2.r * 
 | 
						|
		dl[i__2].i + z__2.i * dl[i__2].r;
 | 
						|
	ctemp.r = z__1.r, ctemp.i = z__1.i;
 | 
						|
    }
 | 
						|
     ret_val->r = ctemp.r,  ret_val->i = ctemp.i;
 | 
						|
    return ;
 | 
						|
 | 
						|
/*     End of ZLATM2 */
 | 
						|
 | 
						|
} /* zlatm2_ */
 | 
						|
 |