1848 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1848 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef blasint logical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static real c_b12 = 0.f;
 | 
						|
static real c_b13 = 1.f;
 | 
						|
static integer c__1 = 1;
 | 
						|
static integer c__3 = 3;
 | 
						|
 | 
						|
/* > \brief \b SHGEQZ */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download SHGEQZ + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/shgeqz.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/shgeqz.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/shgeqz.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE SHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT, */
 | 
						|
/*                          ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK, */
 | 
						|
/*                          LWORK, INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          COMPQ, COMPZ, JOB */
 | 
						|
/*       INTEGER            IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N */
 | 
						|
/*       REAL               ALPHAI( * ), ALPHAR( * ), BETA( * ), */
 | 
						|
/*      $                   H( LDH, * ), Q( LDQ, * ), T( LDT, * ), */
 | 
						|
/*      $                   WORK( * ), Z( LDZ, * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > SHGEQZ computes the eigenvalues of a real matrix pair (H,T), */
 | 
						|
/* > where H is an upper Hessenberg matrix and T is upper triangular, */
 | 
						|
/* > using the double-shift QZ method. */
 | 
						|
/* > Matrix pairs of this type are produced by the reduction to */
 | 
						|
/* > generalized upper Hessenberg form of a real matrix pair (A,B): */
 | 
						|
/* > */
 | 
						|
/* >    A = Q1*H*Z1**T,  B = Q1*T*Z1**T, */
 | 
						|
/* > */
 | 
						|
/* > as computed by SGGHRD. */
 | 
						|
/* > */
 | 
						|
/* > If JOB='S', then the Hessenberg-triangular pair (H,T) is */
 | 
						|
/* > also reduced to generalized Schur form, */
 | 
						|
/* > */
 | 
						|
/* >    H = Q*S*Z**T,  T = Q*P*Z**T, */
 | 
						|
/* > */
 | 
						|
/* > where Q and Z are orthogonal matrices, P is an upper triangular */
 | 
						|
/* > matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2 */
 | 
						|
/* > diagonal blocks. */
 | 
						|
/* > */
 | 
						|
/* > The 1-by-1 blocks correspond to real eigenvalues of the matrix pair */
 | 
						|
/* > (H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of */
 | 
						|
/* > eigenvalues. */
 | 
						|
/* > */
 | 
						|
/* > Additionally, the 2-by-2 upper triangular diagonal blocks of P */
 | 
						|
/* > corresponding to 2-by-2 blocks of S are reduced to positive diagonal */
 | 
						|
/* > form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0, */
 | 
						|
/* > P(j,j) > 0, and P(j+1,j+1) > 0. */
 | 
						|
/* > */
 | 
						|
/* > Optionally, the orthogonal matrix Q from the generalized Schur */
 | 
						|
/* > factorization may be postmultiplied into an input matrix Q1, and the */
 | 
						|
/* > orthogonal matrix Z may be postmultiplied into an input matrix Z1. */
 | 
						|
/* > If Q1 and Z1 are the orthogonal matrices from SGGHRD that reduced */
 | 
						|
/* > the matrix pair (A,B) to generalized upper Hessenberg form, then the */
 | 
						|
/* > output matrices Q1*Q and Z1*Z are the orthogonal factors from the */
 | 
						|
/* > generalized Schur factorization of (A,B): */
 | 
						|
/* > */
 | 
						|
/* >    A = (Q1*Q)*S*(Z1*Z)**T,  B = (Q1*Q)*P*(Z1*Z)**T. */
 | 
						|
/* > */
 | 
						|
/* > To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently, */
 | 
						|
/* > of (A,B)) are computed as a pair of values (alpha,beta), where alpha is */
 | 
						|
/* > complex and beta real. */
 | 
						|
/* > If beta is nonzero, lambda = alpha / beta is an eigenvalue of the */
 | 
						|
/* > generalized nonsymmetric eigenvalue problem (GNEP) */
 | 
						|
/* >    A*x = lambda*B*x */
 | 
						|
/* > and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the */
 | 
						|
/* > alternate form of the GNEP */
 | 
						|
/* >    mu*A*y = B*y. */
 | 
						|
/* > Real eigenvalues can be read directly from the generalized Schur */
 | 
						|
/* > form: */
 | 
						|
/* >   alpha = S(i,i), beta = P(i,i). */
 | 
						|
/* > */
 | 
						|
/* > Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix */
 | 
						|
/* >      Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973), */
 | 
						|
/* >      pp. 241--256. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] JOB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          JOB is CHARACTER*1 */
 | 
						|
/* >          = 'E': Compute eigenvalues only; */
 | 
						|
/* >          = 'S': Compute eigenvalues and the Schur form. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] COMPQ */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          COMPQ is CHARACTER*1 */
 | 
						|
/* >          = 'N': Left Schur vectors (Q) are not computed; */
 | 
						|
/* >          = 'I': Q is initialized to the unit matrix and the matrix Q */
 | 
						|
/* >                 of left Schur vectors of (H,T) is returned; */
 | 
						|
/* >          = 'V': Q must contain an orthogonal matrix Q1 on entry and */
 | 
						|
/* >                 the product Q1*Q is returned. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] COMPZ */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          COMPZ is CHARACTER*1 */
 | 
						|
/* >          = 'N': Right Schur vectors (Z) are not computed; */
 | 
						|
/* >          = 'I': Z is initialized to the unit matrix and the matrix Z */
 | 
						|
/* >                 of right Schur vectors of (H,T) is returned; */
 | 
						|
/* >          = 'V': Z must contain an orthogonal matrix Z1 on entry and */
 | 
						|
/* >                 the product Z1*Z is returned. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrices H, T, Q, and Z.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] ILO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ILO is INTEGER */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] IHI */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IHI is INTEGER */
 | 
						|
/* >          ILO and IHI mark the rows and columns of H which are in */
 | 
						|
/* >          Hessenberg form.  It is assumed that A is already upper */
 | 
						|
/* >          triangular in rows and columns 1:ILO-1 and IHI+1:N. */
 | 
						|
/* >          If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] H */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          H is REAL array, dimension (LDH, N) */
 | 
						|
/* >          On entry, the N-by-N upper Hessenberg matrix H. */
 | 
						|
/* >          On exit, if JOB = 'S', H contains the upper quasi-triangular */
 | 
						|
/* >          matrix S from the generalized Schur factorization. */
 | 
						|
/* >          If JOB = 'E', the diagonal blocks of H match those of S, but */
 | 
						|
/* >          the rest of H is unspecified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDH */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDH is INTEGER */
 | 
						|
/* >          The leading dimension of the array H.  LDH >= f2cmax( 1, N ). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] T */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          T is REAL array, dimension (LDT, N) */
 | 
						|
/* >          On entry, the N-by-N upper triangular matrix T. */
 | 
						|
/* >          On exit, if JOB = 'S', T contains the upper triangular */
 | 
						|
/* >          matrix P from the generalized Schur factorization; */
 | 
						|
/* >          2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S */
 | 
						|
/* >          are reduced to positive diagonal form, i.e., if H(j+1,j) is */
 | 
						|
/* >          non-zero, then T(j+1,j) = T(j,j+1) = 0, T(j,j) > 0, and */
 | 
						|
/* >          T(j+1,j+1) > 0. */
 | 
						|
/* >          If JOB = 'E', the diagonal blocks of T match those of P, but */
 | 
						|
/* >          the rest of T is unspecified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDT */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDT is INTEGER */
 | 
						|
/* >          The leading dimension of the array T.  LDT >= f2cmax( 1, N ). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] ALPHAR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ALPHAR is REAL array, dimension (N) */
 | 
						|
/* >          The real parts of each scalar alpha defining an eigenvalue */
 | 
						|
/* >          of GNEP. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] ALPHAI */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ALPHAI is REAL array, dimension (N) */
 | 
						|
/* >          The imaginary parts of each scalar alpha defining an */
 | 
						|
/* >          eigenvalue of GNEP. */
 | 
						|
/* >          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
 | 
						|
/* >          positive, then the j-th and (j+1)-st eigenvalues are a */
 | 
						|
/* >          complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] BETA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          BETA is REAL array, dimension (N) */
 | 
						|
/* >          The scalars beta that define the eigenvalues of GNEP. */
 | 
						|
/* >          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */
 | 
						|
/* >          beta = BETA(j) represent the j-th eigenvalue of the matrix */
 | 
						|
/* >          pair (A,B), in one of the forms lambda = alpha/beta or */
 | 
						|
/* >          mu = beta/alpha.  Since either lambda or mu may overflow, */
 | 
						|
/* >          they should not, in general, be computed. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] Q */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          Q is REAL array, dimension (LDQ, N) */
 | 
						|
/* >          On entry, if COMPQ = 'V', the orthogonal matrix Q1 used in */
 | 
						|
/* >          the reduction of (A,B) to generalized Hessenberg form. */
 | 
						|
/* >          On exit, if COMPQ = 'I', the orthogonal matrix of left Schur */
 | 
						|
/* >          vectors of (H,T), and if COMPQ = 'V', the orthogonal matrix */
 | 
						|
/* >          of left Schur vectors of (A,B). */
 | 
						|
/* >          Not referenced if COMPQ = 'N'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDQ */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDQ is INTEGER */
 | 
						|
/* >          The leading dimension of the array Q.  LDQ >= 1. */
 | 
						|
/* >          If COMPQ='V' or 'I', then LDQ >= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] Z */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          Z is REAL array, dimension (LDZ, N) */
 | 
						|
/* >          On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in */
 | 
						|
/* >          the reduction of (A,B) to generalized Hessenberg form. */
 | 
						|
/* >          On exit, if COMPZ = 'I', the orthogonal matrix of */
 | 
						|
/* >          right Schur vectors of (H,T), and if COMPZ = 'V', the */
 | 
						|
/* >          orthogonal matrix of right Schur vectors of (A,B). */
 | 
						|
/* >          Not referenced if COMPZ = 'N'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDZ */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDZ is INTEGER */
 | 
						|
/* >          The leading dimension of the array Z.  LDZ >= 1. */
 | 
						|
/* >          If COMPZ='V' or 'I', then LDZ >= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is REAL array, dimension (MAX(1,LWORK)) */
 | 
						|
/* >          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LWORK is INTEGER */
 | 
						|
/* >          The dimension of the array WORK.  LWORK >= f2cmax(1,N). */
 | 
						|
/* > */
 | 
						|
/* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | 
						|
/* >          only calculates the optimal size of the WORK array, returns */
 | 
						|
/* >          this value as the first entry of the WORK array, and no error */
 | 
						|
/* >          message related to LWORK is issued by XERBLA. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0: successful exit */
 | 
						|
/* >          < 0: if INFO = -i, the i-th argument had an illegal value */
 | 
						|
/* >          = 1,...,N: the QZ iteration did not converge.  (H,T) is not */
 | 
						|
/* >                     in Schur form, but ALPHAR(i), ALPHAI(i), and */
 | 
						|
/* >                     BETA(i), i=INFO+1,...,N should be correct. */
 | 
						|
/* >          = N+1,...,2*N: the shift calculation failed.  (H,T) is not */
 | 
						|
/* >                     in Schur form, but ALPHAR(i), ALPHAI(i), and */
 | 
						|
/* >                     BETA(i), i=INFO-N+1,...,N should be correct. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date June 2016 */
 | 
						|
 | 
						|
/* > \ingroup realGEcomputational */
 | 
						|
 | 
						|
/* > \par Further Details: */
 | 
						|
/*  ===================== */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* >  Iteration counters: */
 | 
						|
/* > */
 | 
						|
/* >  JITER  -- counts iterations. */
 | 
						|
/* >  IITER  -- counts iterations run since ILAST was last */
 | 
						|
/* >            changed.  This is therefore reset only when a 1-by-1 or */
 | 
						|
/* >            2-by-2 block deflates off the bottom. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void shgeqz_(char *job, char *compq, char *compz, integer *n, 
 | 
						|
	integer *ilo, integer *ihi, real *h__, integer *ldh, real *t, integer 
 | 
						|
	*ldt, real *alphar, real *alphai, real *beta, real *q, integer *ldq, 
 | 
						|
	real *z__, integer *ldz, real *work, integer *lwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer h_dim1, h_offset, q_dim1, q_offset, t_dim1, t_offset, z_dim1, 
 | 
						|
	    z_offset, i__1, i__2, i__3, i__4;
 | 
						|
    real r__1, r__2, r__3, r__4;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    real ad11l, ad12l, ad21l, ad22l, ad32l, wabs, atol, btol, temp;
 | 
						|
    extern /* Subroutine */ void srot_(integer *, real *, integer *, real *, 
 | 
						|
	    integer *, real *, real *), slag2_(real *, integer *, real *, 
 | 
						|
	    integer *, real *, real *, real *, real *, real *, real *);
 | 
						|
    real temp2, s1inv, c__;
 | 
						|
    integer j;
 | 
						|
    real s, v[3], scale;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    integer iiter, ilast, jiter;
 | 
						|
    real anorm, bnorm;
 | 
						|
    integer maxit;
 | 
						|
    real tempi, tempr, s1, s2, t1, u1, u2;
 | 
						|
    logical ilazr2;
 | 
						|
    real a11, a12, a21, a22, b11, b22, c12, c21;
 | 
						|
    extern real slapy2_(real *, real *);
 | 
						|
    integer jc;
 | 
						|
    extern real slapy3_(real *, real *, real *);
 | 
						|
    real an, bn, cl;
 | 
						|
    extern /* Subroutine */ void slasv2_(real *, real *, real *, real *, real *
 | 
						|
	    , real *, real *, real *, real *);
 | 
						|
    real cq, cr;
 | 
						|
    integer in;
 | 
						|
    real ascale, bscale, u12, w11;
 | 
						|
    integer jr;
 | 
						|
    real cz, sl, w12, w21, w22, wi, sr;
 | 
						|
    extern real slamch_(char *);
 | 
						|
    real vs, wr, safmin;
 | 
						|
    extern /* Subroutine */ void slarfg_(integer *, real *, real *, integer *, 
 | 
						|
	    real *);
 | 
						|
    real safmax;
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | 
						|
    real eshift;
 | 
						|
    logical ilschr;
 | 
						|
    real b1a, b2a;
 | 
						|
    integer icompq, ilastm;
 | 
						|
    extern real slanhs_(char *, integer *, real *, integer *, real *);
 | 
						|
    real a1i;
 | 
						|
    integer ischur;
 | 
						|
    real a2i, b1i;
 | 
						|
    logical ilazro;
 | 
						|
    integer icompz, ifirst, ifrstm;
 | 
						|
    real a1r;
 | 
						|
    integer istart;
 | 
						|
    logical ilpivt;
 | 
						|
    real a2r, b1r, b2i, b2r;
 | 
						|
    extern /* Subroutine */ void slartg_(real *, real *, real *, real *, real *
 | 
						|
	    ), slaset_(char *, integer *, integer *, real *, real *, real *, 
 | 
						|
	    integer *);
 | 
						|
    logical lquery;
 | 
						|
    real wr2, ad11, ad12, ad21, ad22, c11i, c22i;
 | 
						|
    integer jch;
 | 
						|
    real c11r, c22r;
 | 
						|
    logical ilq;
 | 
						|
    real u12l, tau, sqi;
 | 
						|
    logical ilz;
 | 
						|
    real ulp, sqr, szi, szr;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     June 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
/*    $                     SAFETY = 1.0E+0 ) */
 | 
						|
 | 
						|
/*     Decode JOB, COMPQ, COMPZ */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    h_dim1 = *ldh;
 | 
						|
    h_offset = 1 + h_dim1 * 1;
 | 
						|
    h__ -= h_offset;
 | 
						|
    t_dim1 = *ldt;
 | 
						|
    t_offset = 1 + t_dim1 * 1;
 | 
						|
    t -= t_offset;
 | 
						|
    --alphar;
 | 
						|
    --alphai;
 | 
						|
    --beta;
 | 
						|
    q_dim1 = *ldq;
 | 
						|
    q_offset = 1 + q_dim1 * 1;
 | 
						|
    q -= q_offset;
 | 
						|
    z_dim1 = *ldz;
 | 
						|
    z_offset = 1 + z_dim1 * 1;
 | 
						|
    z__ -= z_offset;
 | 
						|
    --work;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    if (lsame_(job, "E")) {
 | 
						|
	ilschr = FALSE_;
 | 
						|
	ischur = 1;
 | 
						|
    } else if (lsame_(job, "S")) {
 | 
						|
	ilschr = TRUE_;
 | 
						|
	ischur = 2;
 | 
						|
    } else {
 | 
						|
	ischur = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (lsame_(compq, "N")) {
 | 
						|
	ilq = FALSE_;
 | 
						|
	icompq = 1;
 | 
						|
    } else if (lsame_(compq, "V")) {
 | 
						|
	ilq = TRUE_;
 | 
						|
	icompq = 2;
 | 
						|
    } else if (lsame_(compq, "I")) {
 | 
						|
	ilq = TRUE_;
 | 
						|
	icompq = 3;
 | 
						|
    } else {
 | 
						|
	icompq = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (lsame_(compz, "N")) {
 | 
						|
	ilz = FALSE_;
 | 
						|
	icompz = 1;
 | 
						|
    } else if (lsame_(compz, "V")) {
 | 
						|
	ilz = TRUE_;
 | 
						|
	icompz = 2;
 | 
						|
    } else if (lsame_(compz, "I")) {
 | 
						|
	ilz = TRUE_;
 | 
						|
	icompz = 3;
 | 
						|
    } else {
 | 
						|
	icompz = 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Check Argument Values */
 | 
						|
 | 
						|
    *info = 0;
 | 
						|
    work[1] = (real) f2cmax(1,*n);
 | 
						|
    lquery = *lwork == -1;
 | 
						|
    if (ischur == 0) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (icompq == 0) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (icompz == 0) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (*ilo < 1) {
 | 
						|
	*info = -5;
 | 
						|
    } else if (*ihi > *n || *ihi < *ilo - 1) {
 | 
						|
	*info = -6;
 | 
						|
    } else if (*ldh < *n) {
 | 
						|
	*info = -8;
 | 
						|
    } else if (*ldt < *n) {
 | 
						|
	*info = -10;
 | 
						|
    } else if (*ldq < 1 || ilq && *ldq < *n) {
 | 
						|
	*info = -15;
 | 
						|
    } else if (*ldz < 1 || ilz && *ldz < *n) {
 | 
						|
	*info = -17;
 | 
						|
    } else if (*lwork < f2cmax(1,*n) && ! lquery) {
 | 
						|
	*info = -19;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("SHGEQZ", &i__1, (ftnlen)6);
 | 
						|
	return;
 | 
						|
    } else if (lquery) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n <= 0) {
 | 
						|
	work[1] = 1.f;
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Initialize Q and Z */
 | 
						|
 | 
						|
    if (icompq == 3) {
 | 
						|
	slaset_("Full", n, n, &c_b12, &c_b13, &q[q_offset], ldq);
 | 
						|
    }
 | 
						|
    if (icompz == 3) {
 | 
						|
	slaset_("Full", n, n, &c_b12, &c_b13, &z__[z_offset], ldz);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Machine Constants */
 | 
						|
 | 
						|
    in = *ihi + 1 - *ilo;
 | 
						|
    safmin = slamch_("S");
 | 
						|
    safmax = 1.f / safmin;
 | 
						|
    ulp = slamch_("E") * slamch_("B");
 | 
						|
    anorm = slanhs_("F", &in, &h__[*ilo + *ilo * h_dim1], ldh, &work[1]);
 | 
						|
    bnorm = slanhs_("F", &in, &t[*ilo + *ilo * t_dim1], ldt, &work[1]);
 | 
						|
/* Computing MAX */
 | 
						|
    r__1 = safmin, r__2 = ulp * anorm;
 | 
						|
    atol = f2cmax(r__1,r__2);
 | 
						|
/* Computing MAX */
 | 
						|
    r__1 = safmin, r__2 = ulp * bnorm;
 | 
						|
    btol = f2cmax(r__1,r__2);
 | 
						|
    ascale = 1.f / f2cmax(safmin,anorm);
 | 
						|
    bscale = 1.f / f2cmax(safmin,bnorm);
 | 
						|
 | 
						|
/*     Set Eigenvalues IHI+1:N */
 | 
						|
 | 
						|
    i__1 = *n;
 | 
						|
    for (j = *ihi + 1; j <= i__1; ++j) {
 | 
						|
	if (t[j + j * t_dim1] < 0.f) {
 | 
						|
	    if (ilschr) {
 | 
						|
		i__2 = j;
 | 
						|
		for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
		    h__[jr + j * h_dim1] = -h__[jr + j * h_dim1];
 | 
						|
		    t[jr + j * t_dim1] = -t[jr + j * t_dim1];
 | 
						|
/* L10: */
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
		h__[j + j * h_dim1] = -h__[j + j * h_dim1];
 | 
						|
		t[j + j * t_dim1] = -t[j + j * t_dim1];
 | 
						|
	    }
 | 
						|
	    if (ilz) {
 | 
						|
		i__2 = *n;
 | 
						|
		for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
		    z__[jr + j * z_dim1] = -z__[jr + j * z_dim1];
 | 
						|
/* L20: */
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	alphar[j] = h__[j + j * h_dim1];
 | 
						|
	alphai[j] = 0.f;
 | 
						|
	beta[j] = t[j + j * t_dim1];
 | 
						|
/* L30: */
 | 
						|
    }
 | 
						|
 | 
						|
/*     If IHI < ILO, skip QZ steps */
 | 
						|
 | 
						|
    if (*ihi < *ilo) {
 | 
						|
	goto L380;
 | 
						|
    }
 | 
						|
 | 
						|
/*     MAIN QZ ITERATION LOOP */
 | 
						|
 | 
						|
/*     Initialize dynamic indices */
 | 
						|
 | 
						|
/*     Eigenvalues ILAST+1:N have been found. */
 | 
						|
/*        Column operations modify rows IFRSTM:whatever. */
 | 
						|
/*        Row operations modify columns whatever:ILASTM. */
 | 
						|
 | 
						|
/*     If only eigenvalues are being computed, then */
 | 
						|
/*        IFRSTM is the row of the last splitting row above row ILAST; */
 | 
						|
/*        this is always at least ILO. */
 | 
						|
/*     IITER counts iterations since the last eigenvalue was found, */
 | 
						|
/*        to tell when to use an extraordinary shift. */
 | 
						|
/*     MAXIT is the maximum number of QZ sweeps allowed. */
 | 
						|
 | 
						|
    ilast = *ihi;
 | 
						|
    if (ilschr) {
 | 
						|
	ifrstm = 1;
 | 
						|
	ilastm = *n;
 | 
						|
    } else {
 | 
						|
	ifrstm = *ilo;
 | 
						|
	ilastm = *ihi;
 | 
						|
    }
 | 
						|
    iiter = 0;
 | 
						|
    eshift = 0.f;
 | 
						|
    maxit = (*ihi - *ilo + 1) * 30;
 | 
						|
 | 
						|
    i__1 = maxit;
 | 
						|
    for (jiter = 1; jiter <= i__1; ++jiter) {
 | 
						|
 | 
						|
/*        Split the matrix if possible. */
 | 
						|
 | 
						|
/*        Two tests: */
 | 
						|
/*           1: H(j,j-1)=0  or  j=ILO */
 | 
						|
/*           2: T(j,j)=0 */
 | 
						|
 | 
						|
	if (ilast == *ilo) {
 | 
						|
 | 
						|
/*           Special case: j=ILAST */
 | 
						|
 | 
						|
	    goto L80;
 | 
						|
	} else {
 | 
						|
	    if ((r__1 = h__[ilast + (ilast - 1) * h_dim1], abs(r__1)) <= atol)
 | 
						|
		     {
 | 
						|
		h__[ilast + (ilast - 1) * h_dim1] = 0.f;
 | 
						|
		goto L80;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
	if ((r__1 = t[ilast + ilast * t_dim1], abs(r__1)) <= btol) {
 | 
						|
	    t[ilast + ilast * t_dim1] = 0.f;
 | 
						|
	    goto L70;
 | 
						|
	}
 | 
						|
 | 
						|
/*        General case: j<ILAST */
 | 
						|
 | 
						|
	i__2 = *ilo;
 | 
						|
	for (j = ilast - 1; j >= i__2; --j) {
 | 
						|
 | 
						|
/*           Test 1: for H(j,j-1)=0 or j=ILO */
 | 
						|
 | 
						|
	    if (j == *ilo) {
 | 
						|
		ilazro = TRUE_;
 | 
						|
	    } else {
 | 
						|
		if ((r__1 = h__[j + (j - 1) * h_dim1], abs(r__1)) <= atol) {
 | 
						|
		    h__[j + (j - 1) * h_dim1] = 0.f;
 | 
						|
		    ilazro = TRUE_;
 | 
						|
		} else {
 | 
						|
		    ilazro = FALSE_;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Test 2: for T(j,j)=0 */
 | 
						|
 | 
						|
	    if ((r__1 = t[j + j * t_dim1], abs(r__1)) < btol) {
 | 
						|
		t[j + j * t_dim1] = 0.f;
 | 
						|
 | 
						|
/*              Test 1a: Check for 2 consecutive small subdiagonals in A */
 | 
						|
 | 
						|
		ilazr2 = FALSE_;
 | 
						|
		if (! ilazro) {
 | 
						|
		    temp = (r__1 = h__[j + (j - 1) * h_dim1], abs(r__1));
 | 
						|
		    temp2 = (r__1 = h__[j + j * h_dim1], abs(r__1));
 | 
						|
		    tempr = f2cmax(temp,temp2);
 | 
						|
		    if (tempr < 1.f && tempr != 0.f) {
 | 
						|
			temp /= tempr;
 | 
						|
			temp2 /= tempr;
 | 
						|
		    }
 | 
						|
		    if (temp * (ascale * (r__1 = h__[j + 1 + j * h_dim1], abs(
 | 
						|
			    r__1))) <= temp2 * (ascale * atol)) {
 | 
						|
			ilazr2 = TRUE_;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
 | 
						|
/*              If both tests pass (1 & 2), i.e., the leading diagonal */
 | 
						|
/*              element of B in the block is zero, split a 1x1 block off */
 | 
						|
/*              at the top. (I.e., at the J-th row/column) The leading */
 | 
						|
/*              diagonal element of the remainder can also be zero, so */
 | 
						|
/*              this may have to be done repeatedly. */
 | 
						|
 | 
						|
		if (ilazro || ilazr2) {
 | 
						|
		    i__3 = ilast - 1;
 | 
						|
		    for (jch = j; jch <= i__3; ++jch) {
 | 
						|
			temp = h__[jch + jch * h_dim1];
 | 
						|
			slartg_(&temp, &h__[jch + 1 + jch * h_dim1], &c__, &s,
 | 
						|
				 &h__[jch + jch * h_dim1]);
 | 
						|
			h__[jch + 1 + jch * h_dim1] = 0.f;
 | 
						|
			i__4 = ilastm - jch;
 | 
						|
			srot_(&i__4, &h__[jch + (jch + 1) * h_dim1], ldh, &
 | 
						|
				h__[jch + 1 + (jch + 1) * h_dim1], ldh, &c__, 
 | 
						|
				&s);
 | 
						|
			i__4 = ilastm - jch;
 | 
						|
			srot_(&i__4, &t[jch + (jch + 1) * t_dim1], ldt, &t[
 | 
						|
				jch + 1 + (jch + 1) * t_dim1], ldt, &c__, &s);
 | 
						|
			if (ilq) {
 | 
						|
			    srot_(n, &q[jch * q_dim1 + 1], &c__1, &q[(jch + 1)
 | 
						|
				     * q_dim1 + 1], &c__1, &c__, &s);
 | 
						|
			}
 | 
						|
			if (ilazr2) {
 | 
						|
			    h__[jch + (jch - 1) * h_dim1] *= c__;
 | 
						|
			}
 | 
						|
			ilazr2 = FALSE_;
 | 
						|
			if ((r__1 = t[jch + 1 + (jch + 1) * t_dim1], abs(r__1)
 | 
						|
				) >= btol) {
 | 
						|
			    if (jch + 1 >= ilast) {
 | 
						|
				goto L80;
 | 
						|
			    } else {
 | 
						|
				ifirst = jch + 1;
 | 
						|
				goto L110;
 | 
						|
			    }
 | 
						|
			}
 | 
						|
			t[jch + 1 + (jch + 1) * t_dim1] = 0.f;
 | 
						|
/* L40: */
 | 
						|
		    }
 | 
						|
		    goto L70;
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                 Only test 2 passed -- chase the zero to T(ILAST,ILAST) */
 | 
						|
/*                 Then process as in the case T(ILAST,ILAST)=0 */
 | 
						|
 | 
						|
		    i__3 = ilast - 1;
 | 
						|
		    for (jch = j; jch <= i__3; ++jch) {
 | 
						|
			temp = t[jch + (jch + 1) * t_dim1];
 | 
						|
			slartg_(&temp, &t[jch + 1 + (jch + 1) * t_dim1], &c__,
 | 
						|
				 &s, &t[jch + (jch + 1) * t_dim1]);
 | 
						|
			t[jch + 1 + (jch + 1) * t_dim1] = 0.f;
 | 
						|
			if (jch < ilastm - 1) {
 | 
						|
			    i__4 = ilastm - jch - 1;
 | 
						|
			    srot_(&i__4, &t[jch + (jch + 2) * t_dim1], ldt, &
 | 
						|
				    t[jch + 1 + (jch + 2) * t_dim1], ldt, &
 | 
						|
				    c__, &s);
 | 
						|
			}
 | 
						|
			i__4 = ilastm - jch + 2;
 | 
						|
			srot_(&i__4, &h__[jch + (jch - 1) * h_dim1], ldh, &
 | 
						|
				h__[jch + 1 + (jch - 1) * h_dim1], ldh, &c__, 
 | 
						|
				&s);
 | 
						|
			if (ilq) {
 | 
						|
			    srot_(n, &q[jch * q_dim1 + 1], &c__1, &q[(jch + 1)
 | 
						|
				     * q_dim1 + 1], &c__1, &c__, &s);
 | 
						|
			}
 | 
						|
			temp = h__[jch + 1 + jch * h_dim1];
 | 
						|
			slartg_(&temp, &h__[jch + 1 + (jch - 1) * h_dim1], &
 | 
						|
				c__, &s, &h__[jch + 1 + jch * h_dim1]);
 | 
						|
			h__[jch + 1 + (jch - 1) * h_dim1] = 0.f;
 | 
						|
			i__4 = jch + 1 - ifrstm;
 | 
						|
			srot_(&i__4, &h__[ifrstm + jch * h_dim1], &c__1, &h__[
 | 
						|
				ifrstm + (jch - 1) * h_dim1], &c__1, &c__, &s)
 | 
						|
				;
 | 
						|
			i__4 = jch - ifrstm;
 | 
						|
			srot_(&i__4, &t[ifrstm + jch * t_dim1], &c__1, &t[
 | 
						|
				ifrstm + (jch - 1) * t_dim1], &c__1, &c__, &s)
 | 
						|
				;
 | 
						|
			if (ilz) {
 | 
						|
			    srot_(n, &z__[jch * z_dim1 + 1], &c__1, &z__[(jch 
 | 
						|
				    - 1) * z_dim1 + 1], &c__1, &c__, &s);
 | 
						|
			}
 | 
						|
/* L50: */
 | 
						|
		    }
 | 
						|
		    goto L70;
 | 
						|
		}
 | 
						|
	    } else if (ilazro) {
 | 
						|
 | 
						|
/*              Only test 1 passed -- work on J:ILAST */
 | 
						|
 | 
						|
		ifirst = j;
 | 
						|
		goto L110;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Neither test passed -- try next J */
 | 
						|
 | 
						|
/* L60: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        (Drop-through is "impossible") */
 | 
						|
 | 
						|
	*info = *n + 1;
 | 
						|
	goto L420;
 | 
						|
 | 
						|
/*        T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a */
 | 
						|
/*        1x1 block. */
 | 
						|
 | 
						|
L70:
 | 
						|
	temp = h__[ilast + ilast * h_dim1];
 | 
						|
	slartg_(&temp, &h__[ilast + (ilast - 1) * h_dim1], &c__, &s, &h__[
 | 
						|
		ilast + ilast * h_dim1]);
 | 
						|
	h__[ilast + (ilast - 1) * h_dim1] = 0.f;
 | 
						|
	i__2 = ilast - ifrstm;
 | 
						|
	srot_(&i__2, &h__[ifrstm + ilast * h_dim1], &c__1, &h__[ifrstm + (
 | 
						|
		ilast - 1) * h_dim1], &c__1, &c__, &s);
 | 
						|
	i__2 = ilast - ifrstm;
 | 
						|
	srot_(&i__2, &t[ifrstm + ilast * t_dim1], &c__1, &t[ifrstm + (ilast - 
 | 
						|
		1) * t_dim1], &c__1, &c__, &s);
 | 
						|
	if (ilz) {
 | 
						|
	    srot_(n, &z__[ilast * z_dim1 + 1], &c__1, &z__[(ilast - 1) * 
 | 
						|
		    z_dim1 + 1], &c__1, &c__, &s);
 | 
						|
	}
 | 
						|
 | 
						|
/*        H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHAR, ALPHAI, */
 | 
						|
/*                              and BETA */
 | 
						|
 | 
						|
L80:
 | 
						|
	if (t[ilast + ilast * t_dim1] < 0.f) {
 | 
						|
	    if (ilschr) {
 | 
						|
		i__2 = ilast;
 | 
						|
		for (j = ifrstm; j <= i__2; ++j) {
 | 
						|
		    h__[j + ilast * h_dim1] = -h__[j + ilast * h_dim1];
 | 
						|
		    t[j + ilast * t_dim1] = -t[j + ilast * t_dim1];
 | 
						|
/* L90: */
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
		h__[ilast + ilast * h_dim1] = -h__[ilast + ilast * h_dim1];
 | 
						|
		t[ilast + ilast * t_dim1] = -t[ilast + ilast * t_dim1];
 | 
						|
	    }
 | 
						|
	    if (ilz) {
 | 
						|
		i__2 = *n;
 | 
						|
		for (j = 1; j <= i__2; ++j) {
 | 
						|
		    z__[j + ilast * z_dim1] = -z__[j + ilast * z_dim1];
 | 
						|
/* L100: */
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	alphar[ilast] = h__[ilast + ilast * h_dim1];
 | 
						|
	alphai[ilast] = 0.f;
 | 
						|
	beta[ilast] = t[ilast + ilast * t_dim1];
 | 
						|
 | 
						|
/*        Go to next block -- exit if finished. */
 | 
						|
 | 
						|
	--ilast;
 | 
						|
	if (ilast < *ilo) {
 | 
						|
	    goto L380;
 | 
						|
	}
 | 
						|
 | 
						|
/*        Reset counters */
 | 
						|
 | 
						|
	iiter = 0;
 | 
						|
	eshift = 0.f;
 | 
						|
	if (! ilschr) {
 | 
						|
	    ilastm = ilast;
 | 
						|
	    if (ifrstm > ilast) {
 | 
						|
		ifrstm = *ilo;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	goto L350;
 | 
						|
 | 
						|
/*        QZ step */
 | 
						|
 | 
						|
/*        This iteration only involves rows/columns IFIRST:ILAST. We */
 | 
						|
/*        assume IFIRST < ILAST, and that the diagonal of B is non-zero. */
 | 
						|
 | 
						|
L110:
 | 
						|
	++iiter;
 | 
						|
	if (! ilschr) {
 | 
						|
	    ifrstm = ifirst;
 | 
						|
	}
 | 
						|
 | 
						|
/*        Compute single shifts. */
 | 
						|
 | 
						|
/*        At this point, IFIRST < ILAST, and the diagonal elements of */
 | 
						|
/*        T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in */
 | 
						|
/*        magnitude) */
 | 
						|
 | 
						|
	if (iiter / 10 * 10 == iiter) {
 | 
						|
 | 
						|
/*           Exceptional shift.  Chosen for no particularly good reason. */
 | 
						|
/*           (Single shift only.) */
 | 
						|
 | 
						|
	    if ((real) maxit * safmin * (r__1 = h__[ilast + (ilast - 1) * 
 | 
						|
		    h_dim1], abs(r__1)) < (r__2 = t[ilast - 1 + (ilast - 1) * 
 | 
						|
		    t_dim1], abs(r__2))) {
 | 
						|
		eshift = h__[ilast + (ilast - 1) * h_dim1] / t[ilast - 1 + (
 | 
						|
			ilast - 1) * t_dim1];
 | 
						|
	    } else {
 | 
						|
		eshift += 1.f / (safmin * (real) maxit);
 | 
						|
	    }
 | 
						|
	    s1 = 1.f;
 | 
						|
	    wr = eshift;
 | 
						|
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           Shifts based on the generalized eigenvalues of the */
 | 
						|
/*           bottom-right 2x2 block of A and B. The first eigenvalue */
 | 
						|
/*           returned by SLAG2 is the Wilkinson shift (AEP p.512), */
 | 
						|
 | 
						|
	    r__1 = safmin * 100.f;
 | 
						|
	    slag2_(&h__[ilast - 1 + (ilast - 1) * h_dim1], ldh, &t[ilast - 1 
 | 
						|
		    + (ilast - 1) * t_dim1], ldt, &r__1, &s1, &s2, &wr, &wr2, 
 | 
						|
		    &wi);
 | 
						|
 | 
						|
	    if ((r__1 = wr / s1 * t[ilast + ilast * t_dim1] - h__[ilast + 
 | 
						|
		    ilast * h_dim1], abs(r__1)) > (r__2 = wr2 / s2 * t[ilast 
 | 
						|
		    + ilast * t_dim1] - h__[ilast + ilast * h_dim1], abs(r__2)
 | 
						|
		    )) {
 | 
						|
		temp = wr;
 | 
						|
		wr = wr2;
 | 
						|
		wr2 = temp;
 | 
						|
		temp = s1;
 | 
						|
		s1 = s2;
 | 
						|
		s2 = temp;
 | 
						|
	    }
 | 
						|
/* Computing MAX */
 | 
						|
/* Computing MAX */
 | 
						|
	    r__3 = 1.f, r__4 = abs(wr), r__3 = f2cmax(r__3,r__4), r__4 = abs(wi);
 | 
						|
	    r__1 = s1, r__2 = safmin * f2cmax(r__3,r__4);
 | 
						|
	    temp = f2cmax(r__1,r__2);
 | 
						|
	    if (wi != 0.f) {
 | 
						|
		goto L200;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        Fiddle with shift to avoid overflow */
 | 
						|
 | 
						|
	temp = f2cmin(ascale,1.f) * (safmax * .5f);
 | 
						|
	if (s1 > temp) {
 | 
						|
	    scale = temp / s1;
 | 
						|
	} else {
 | 
						|
	    scale = 1.f;
 | 
						|
	}
 | 
						|
 | 
						|
	temp = f2cmin(bscale,1.f) * (safmax * .5f);
 | 
						|
	if (abs(wr) > temp) {
 | 
						|
/* Computing MIN */
 | 
						|
	    r__1 = scale, r__2 = temp / abs(wr);
 | 
						|
	    scale = f2cmin(r__1,r__2);
 | 
						|
	}
 | 
						|
	s1 = scale * s1;
 | 
						|
	wr = scale * wr;
 | 
						|
 | 
						|
/*        Now check for two consecutive small subdiagonals. */
 | 
						|
 | 
						|
	i__2 = ifirst + 1;
 | 
						|
	for (j = ilast - 1; j >= i__2; --j) {
 | 
						|
	    istart = j;
 | 
						|
	    temp = (r__1 = s1 * h__[j + (j - 1) * h_dim1], abs(r__1));
 | 
						|
	    temp2 = (r__1 = s1 * h__[j + j * h_dim1] - wr * t[j + j * t_dim1],
 | 
						|
		     abs(r__1));
 | 
						|
	    tempr = f2cmax(temp,temp2);
 | 
						|
	    if (tempr < 1.f && tempr != 0.f) {
 | 
						|
		temp /= tempr;
 | 
						|
		temp2 /= tempr;
 | 
						|
	    }
 | 
						|
	    if ((r__1 = ascale * h__[j + 1 + j * h_dim1] * temp, abs(r__1)) <=
 | 
						|
		     ascale * atol * temp2) {
 | 
						|
		goto L130;
 | 
						|
	    }
 | 
						|
/* L120: */
 | 
						|
	}
 | 
						|
 | 
						|
	istart = ifirst;
 | 
						|
L130:
 | 
						|
 | 
						|
/*        Do an implicit single-shift QZ sweep. */
 | 
						|
 | 
						|
/*        Initial Q */
 | 
						|
 | 
						|
	temp = s1 * h__[istart + istart * h_dim1] - wr * t[istart + istart * 
 | 
						|
		t_dim1];
 | 
						|
	temp2 = s1 * h__[istart + 1 + istart * h_dim1];
 | 
						|
	slartg_(&temp, &temp2, &c__, &s, &tempr);
 | 
						|
 | 
						|
/*        Sweep */
 | 
						|
 | 
						|
	i__2 = ilast - 1;
 | 
						|
	for (j = istart; j <= i__2; ++j) {
 | 
						|
	    if (j > istart) {
 | 
						|
		temp = h__[j + (j - 1) * h_dim1];
 | 
						|
		slartg_(&temp, &h__[j + 1 + (j - 1) * h_dim1], &c__, &s, &h__[
 | 
						|
			j + (j - 1) * h_dim1]);
 | 
						|
		h__[j + 1 + (j - 1) * h_dim1] = 0.f;
 | 
						|
	    }
 | 
						|
 | 
						|
	    i__3 = ilastm;
 | 
						|
	    for (jc = j; jc <= i__3; ++jc) {
 | 
						|
		temp = c__ * h__[j + jc * h_dim1] + s * h__[j + 1 + jc * 
 | 
						|
			h_dim1];
 | 
						|
		h__[j + 1 + jc * h_dim1] = -s * h__[j + jc * h_dim1] + c__ * 
 | 
						|
			h__[j + 1 + jc * h_dim1];
 | 
						|
		h__[j + jc * h_dim1] = temp;
 | 
						|
		temp2 = c__ * t[j + jc * t_dim1] + s * t[j + 1 + jc * t_dim1];
 | 
						|
		t[j + 1 + jc * t_dim1] = -s * t[j + jc * t_dim1] + c__ * t[j 
 | 
						|
			+ 1 + jc * t_dim1];
 | 
						|
		t[j + jc * t_dim1] = temp2;
 | 
						|
/* L140: */
 | 
						|
	    }
 | 
						|
	    if (ilq) {
 | 
						|
		i__3 = *n;
 | 
						|
		for (jr = 1; jr <= i__3; ++jr) {
 | 
						|
		    temp = c__ * q[jr + j * q_dim1] + s * q[jr + (j + 1) * 
 | 
						|
			    q_dim1];
 | 
						|
		    q[jr + (j + 1) * q_dim1] = -s * q[jr + j * q_dim1] + c__ *
 | 
						|
			     q[jr + (j + 1) * q_dim1];
 | 
						|
		    q[jr + j * q_dim1] = temp;
 | 
						|
/* L150: */
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
	    temp = t[j + 1 + (j + 1) * t_dim1];
 | 
						|
	    slartg_(&temp, &t[j + 1 + j * t_dim1], &c__, &s, &t[j + 1 + (j + 
 | 
						|
		    1) * t_dim1]);
 | 
						|
	    t[j + 1 + j * t_dim1] = 0.f;
 | 
						|
 | 
						|
/* Computing MIN */
 | 
						|
	    i__4 = j + 2;
 | 
						|
	    i__3 = f2cmin(i__4,ilast);
 | 
						|
	    for (jr = ifrstm; jr <= i__3; ++jr) {
 | 
						|
		temp = c__ * h__[jr + (j + 1) * h_dim1] + s * h__[jr + j * 
 | 
						|
			h_dim1];
 | 
						|
		h__[jr + j * h_dim1] = -s * h__[jr + (j + 1) * h_dim1] + c__ *
 | 
						|
			 h__[jr + j * h_dim1];
 | 
						|
		h__[jr + (j + 1) * h_dim1] = temp;
 | 
						|
/* L160: */
 | 
						|
	    }
 | 
						|
	    i__3 = j;
 | 
						|
	    for (jr = ifrstm; jr <= i__3; ++jr) {
 | 
						|
		temp = c__ * t[jr + (j + 1) * t_dim1] + s * t[jr + j * t_dim1]
 | 
						|
			;
 | 
						|
		t[jr + j * t_dim1] = -s * t[jr + (j + 1) * t_dim1] + c__ * t[
 | 
						|
			jr + j * t_dim1];
 | 
						|
		t[jr + (j + 1) * t_dim1] = temp;
 | 
						|
/* L170: */
 | 
						|
	    }
 | 
						|
	    if (ilz) {
 | 
						|
		i__3 = *n;
 | 
						|
		for (jr = 1; jr <= i__3; ++jr) {
 | 
						|
		    temp = c__ * z__[jr + (j + 1) * z_dim1] + s * z__[jr + j *
 | 
						|
			     z_dim1];
 | 
						|
		    z__[jr + j * z_dim1] = -s * z__[jr + (j + 1) * z_dim1] + 
 | 
						|
			    c__ * z__[jr + j * z_dim1];
 | 
						|
		    z__[jr + (j + 1) * z_dim1] = temp;
 | 
						|
/* L180: */
 | 
						|
		}
 | 
						|
	    }
 | 
						|
/* L190: */
 | 
						|
	}
 | 
						|
 | 
						|
	goto L350;
 | 
						|
 | 
						|
/*        Use Francis double-shift */
 | 
						|
 | 
						|
/*        Note: the Francis double-shift should work with real shifts, */
 | 
						|
/*              but only if the block is at least 3x3. */
 | 
						|
/*              This code may break if this point is reached with */
 | 
						|
/*              a 2x2 block with real eigenvalues. */
 | 
						|
 | 
						|
L200:
 | 
						|
	if (ifirst + 1 == ilast) {
 | 
						|
 | 
						|
/*           Special case -- 2x2 block with complex eigenvectors */
 | 
						|
 | 
						|
/*           Step 1: Standardize, that is, rotate so that */
 | 
						|
 | 
						|
/*                       ( B11  0  ) */
 | 
						|
/*                   B = (         )  with B11 non-negative. */
 | 
						|
/*                       (  0  B22 ) */
 | 
						|
 | 
						|
	    slasv2_(&t[ilast - 1 + (ilast - 1) * t_dim1], &t[ilast - 1 + 
 | 
						|
		    ilast * t_dim1], &t[ilast + ilast * t_dim1], &b22, &b11, &
 | 
						|
		    sr, &cr, &sl, &cl);
 | 
						|
 | 
						|
	    if (b11 < 0.f) {
 | 
						|
		cr = -cr;
 | 
						|
		sr = -sr;
 | 
						|
		b11 = -b11;
 | 
						|
		b22 = -b22;
 | 
						|
	    }
 | 
						|
 | 
						|
	    i__2 = ilastm + 1 - ifirst;
 | 
						|
	    srot_(&i__2, &h__[ilast - 1 + (ilast - 1) * h_dim1], ldh, &h__[
 | 
						|
		    ilast + (ilast - 1) * h_dim1], ldh, &cl, &sl);
 | 
						|
	    i__2 = ilast + 1 - ifrstm;
 | 
						|
	    srot_(&i__2, &h__[ifrstm + (ilast - 1) * h_dim1], &c__1, &h__[
 | 
						|
		    ifrstm + ilast * h_dim1], &c__1, &cr, &sr);
 | 
						|
 | 
						|
	    if (ilast < ilastm) {
 | 
						|
		i__2 = ilastm - ilast;
 | 
						|
		srot_(&i__2, &t[ilast - 1 + (ilast + 1) * t_dim1], ldt, &t[
 | 
						|
			ilast + (ilast + 1) * t_dim1], ldt, &cl, &sl);
 | 
						|
	    }
 | 
						|
	    if (ifrstm < ilast - 1) {
 | 
						|
		i__2 = ifirst - ifrstm;
 | 
						|
		srot_(&i__2, &t[ifrstm + (ilast - 1) * t_dim1], &c__1, &t[
 | 
						|
			ifrstm + ilast * t_dim1], &c__1, &cr, &sr);
 | 
						|
	    }
 | 
						|
 | 
						|
	    if (ilq) {
 | 
						|
		srot_(n, &q[(ilast - 1) * q_dim1 + 1], &c__1, &q[ilast * 
 | 
						|
			q_dim1 + 1], &c__1, &cl, &sl);
 | 
						|
	    }
 | 
						|
	    if (ilz) {
 | 
						|
		srot_(n, &z__[(ilast - 1) * z_dim1 + 1], &c__1, &z__[ilast * 
 | 
						|
			z_dim1 + 1], &c__1, &cr, &sr);
 | 
						|
	    }
 | 
						|
 | 
						|
	    t[ilast - 1 + (ilast - 1) * t_dim1] = b11;
 | 
						|
	    t[ilast - 1 + ilast * t_dim1] = 0.f;
 | 
						|
	    t[ilast + (ilast - 1) * t_dim1] = 0.f;
 | 
						|
	    t[ilast + ilast * t_dim1] = b22;
 | 
						|
 | 
						|
/*           If B22 is negative, negate column ILAST */
 | 
						|
 | 
						|
	    if (b22 < 0.f) {
 | 
						|
		i__2 = ilast;
 | 
						|
		for (j = ifrstm; j <= i__2; ++j) {
 | 
						|
		    h__[j + ilast * h_dim1] = -h__[j + ilast * h_dim1];
 | 
						|
		    t[j + ilast * t_dim1] = -t[j + ilast * t_dim1];
 | 
						|
/* L210: */
 | 
						|
		}
 | 
						|
 | 
						|
		if (ilz) {
 | 
						|
		    i__2 = *n;
 | 
						|
		    for (j = 1; j <= i__2; ++j) {
 | 
						|
			z__[j + ilast * z_dim1] = -z__[j + ilast * z_dim1];
 | 
						|
/* L220: */
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		b22 = -b22;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Step 2: Compute ALPHAR, ALPHAI, and BETA (see refs.) */
 | 
						|
 | 
						|
/*           Recompute shift */
 | 
						|
 | 
						|
	    r__1 = safmin * 100.f;
 | 
						|
	    slag2_(&h__[ilast - 1 + (ilast - 1) * h_dim1], ldh, &t[ilast - 1 
 | 
						|
		    + (ilast - 1) * t_dim1], ldt, &r__1, &s1, &temp, &wr, &
 | 
						|
		    temp2, &wi);
 | 
						|
 | 
						|
/*           If standardization has perturbed the shift onto real line, */
 | 
						|
/*           do another (real single-shift) QR step. */
 | 
						|
 | 
						|
	    if (wi == 0.f) {
 | 
						|
		goto L350;
 | 
						|
	    }
 | 
						|
	    s1inv = 1.f / s1;
 | 
						|
 | 
						|
/*           Do EISPACK (QZVAL) computation of alpha and beta */
 | 
						|
 | 
						|
	    a11 = h__[ilast - 1 + (ilast - 1) * h_dim1];
 | 
						|
	    a21 = h__[ilast + (ilast - 1) * h_dim1];
 | 
						|
	    a12 = h__[ilast - 1 + ilast * h_dim1];
 | 
						|
	    a22 = h__[ilast + ilast * h_dim1];
 | 
						|
 | 
						|
/*           Compute complex Givens rotation on right */
 | 
						|
/*           (Assume some element of C = (sA - wB) > unfl ) */
 | 
						|
/*                            __ */
 | 
						|
/*           (sA - wB) ( CZ   -SZ ) */
 | 
						|
/*                     ( SZ    CZ ) */
 | 
						|
 | 
						|
	    c11r = s1 * a11 - wr * b11;
 | 
						|
	    c11i = -wi * b11;
 | 
						|
	    c12 = s1 * a12;
 | 
						|
	    c21 = s1 * a21;
 | 
						|
	    c22r = s1 * a22 - wr * b22;
 | 
						|
	    c22i = -wi * b22;
 | 
						|
 | 
						|
	    if (abs(c11r) + abs(c11i) + abs(c12) > abs(c21) + abs(c22r) + abs(
 | 
						|
		    c22i)) {
 | 
						|
		t1 = slapy3_(&c12, &c11r, &c11i);
 | 
						|
		cz = c12 / t1;
 | 
						|
		szr = -c11r / t1;
 | 
						|
		szi = -c11i / t1;
 | 
						|
	    } else {
 | 
						|
		cz = slapy2_(&c22r, &c22i);
 | 
						|
		if (cz <= safmin) {
 | 
						|
		    cz = 0.f;
 | 
						|
		    szr = 1.f;
 | 
						|
		    szi = 0.f;
 | 
						|
		} else {
 | 
						|
		    tempr = c22r / cz;
 | 
						|
		    tempi = c22i / cz;
 | 
						|
		    t1 = slapy2_(&cz, &c21);
 | 
						|
		    cz /= t1;
 | 
						|
		    szr = -c21 * tempr / t1;
 | 
						|
		    szi = c21 * tempi / t1;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Compute Givens rotation on left */
 | 
						|
 | 
						|
/*           (  CQ   SQ ) */
 | 
						|
/*           (  __      )  A or B */
 | 
						|
/*           ( -SQ   CQ ) */
 | 
						|
 | 
						|
	    an = abs(a11) + abs(a12) + abs(a21) + abs(a22);
 | 
						|
	    bn = abs(b11) + abs(b22);
 | 
						|
	    wabs = abs(wr) + abs(wi);
 | 
						|
	    if (s1 * an > wabs * bn) {
 | 
						|
		cq = cz * b11;
 | 
						|
		sqr = szr * b22;
 | 
						|
		sqi = -szi * b22;
 | 
						|
	    } else {
 | 
						|
		a1r = cz * a11 + szr * a12;
 | 
						|
		a1i = szi * a12;
 | 
						|
		a2r = cz * a21 + szr * a22;
 | 
						|
		a2i = szi * a22;
 | 
						|
		cq = slapy2_(&a1r, &a1i);
 | 
						|
		if (cq <= safmin) {
 | 
						|
		    cq = 0.f;
 | 
						|
		    sqr = 1.f;
 | 
						|
		    sqi = 0.f;
 | 
						|
		} else {
 | 
						|
		    tempr = a1r / cq;
 | 
						|
		    tempi = a1i / cq;
 | 
						|
		    sqr = tempr * a2r + tempi * a2i;
 | 
						|
		    sqi = tempi * a2r - tempr * a2i;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	    t1 = slapy3_(&cq, &sqr, &sqi);
 | 
						|
	    cq /= t1;
 | 
						|
	    sqr /= t1;
 | 
						|
	    sqi /= t1;
 | 
						|
 | 
						|
/*           Compute diagonal elements of QBZ */
 | 
						|
 | 
						|
	    tempr = sqr * szr - sqi * szi;
 | 
						|
	    tempi = sqr * szi + sqi * szr;
 | 
						|
	    b1r = cq * cz * b11 + tempr * b22;
 | 
						|
	    b1i = tempi * b22;
 | 
						|
	    b1a = slapy2_(&b1r, &b1i);
 | 
						|
	    b2r = cq * cz * b22 + tempr * b11;
 | 
						|
	    b2i = -tempi * b11;
 | 
						|
	    b2a = slapy2_(&b2r, &b2i);
 | 
						|
 | 
						|
/*           Normalize so beta > 0, and Im( alpha1 ) > 0 */
 | 
						|
 | 
						|
	    beta[ilast - 1] = b1a;
 | 
						|
	    beta[ilast] = b2a;
 | 
						|
	    alphar[ilast - 1] = wr * b1a * s1inv;
 | 
						|
	    alphai[ilast - 1] = wi * b1a * s1inv;
 | 
						|
	    alphar[ilast] = wr * b2a * s1inv;
 | 
						|
	    alphai[ilast] = -(wi * b2a) * s1inv;
 | 
						|
 | 
						|
/*           Step 3: Go to next block -- exit if finished. */
 | 
						|
 | 
						|
	    ilast = ifirst - 1;
 | 
						|
	    if (ilast < *ilo) {
 | 
						|
		goto L380;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Reset counters */
 | 
						|
 | 
						|
	    iiter = 0;
 | 
						|
	    eshift = 0.f;
 | 
						|
	    if (! ilschr) {
 | 
						|
		ilastm = ilast;
 | 
						|
		if (ifrstm > ilast) {
 | 
						|
		    ifrstm = *ilo;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	    goto L350;
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           Usual case: 3x3 or larger block, using Francis implicit */
 | 
						|
/*                       double-shift */
 | 
						|
 | 
						|
/*                                    2 */
 | 
						|
/*           Eigenvalue equation is  w  - c w + d = 0, */
 | 
						|
 | 
						|
/*                                         -1 2        -1 */
 | 
						|
/*           so compute 1st column of  (A B  )  - c A B   + d */
 | 
						|
/*           using the formula in QZIT (from EISPACK) */
 | 
						|
 | 
						|
/*           We assume that the block is at least 3x3 */
 | 
						|
 | 
						|
	    ad11 = ascale * h__[ilast - 1 + (ilast - 1) * h_dim1] / (bscale * 
 | 
						|
		    t[ilast - 1 + (ilast - 1) * t_dim1]);
 | 
						|
	    ad21 = ascale * h__[ilast + (ilast - 1) * h_dim1] / (bscale * t[
 | 
						|
		    ilast - 1 + (ilast - 1) * t_dim1]);
 | 
						|
	    ad12 = ascale * h__[ilast - 1 + ilast * h_dim1] / (bscale * t[
 | 
						|
		    ilast + ilast * t_dim1]);
 | 
						|
	    ad22 = ascale * h__[ilast + ilast * h_dim1] / (bscale * t[ilast + 
 | 
						|
		    ilast * t_dim1]);
 | 
						|
	    u12 = t[ilast - 1 + ilast * t_dim1] / t[ilast + ilast * t_dim1];
 | 
						|
	    ad11l = ascale * h__[ifirst + ifirst * h_dim1] / (bscale * t[
 | 
						|
		    ifirst + ifirst * t_dim1]);
 | 
						|
	    ad21l = ascale * h__[ifirst + 1 + ifirst * h_dim1] / (bscale * t[
 | 
						|
		    ifirst + ifirst * t_dim1]);
 | 
						|
	    ad12l = ascale * h__[ifirst + (ifirst + 1) * h_dim1] / (bscale * 
 | 
						|
		    t[ifirst + 1 + (ifirst + 1) * t_dim1]);
 | 
						|
	    ad22l = ascale * h__[ifirst + 1 + (ifirst + 1) * h_dim1] / (
 | 
						|
		    bscale * t[ifirst + 1 + (ifirst + 1) * t_dim1]);
 | 
						|
	    ad32l = ascale * h__[ifirst + 2 + (ifirst + 1) * h_dim1] / (
 | 
						|
		    bscale * t[ifirst + 1 + (ifirst + 1) * t_dim1]);
 | 
						|
	    u12l = t[ifirst + (ifirst + 1) * t_dim1] / t[ifirst + 1 + (ifirst 
 | 
						|
		    + 1) * t_dim1];
 | 
						|
 | 
						|
	    v[0] = (ad11 - ad11l) * (ad22 - ad11l) - ad12 * ad21 + ad21 * u12 
 | 
						|
		    * ad11l + (ad12l - ad11l * u12l) * ad21l;
 | 
						|
	    v[1] = (ad22l - ad11l - ad21l * u12l - (ad11 - ad11l) - (ad22 - 
 | 
						|
		    ad11l) + ad21 * u12) * ad21l;
 | 
						|
	    v[2] = ad32l * ad21l;
 | 
						|
 | 
						|
	    istart = ifirst;
 | 
						|
 | 
						|
	    slarfg_(&c__3, v, &v[1], &c__1, &tau);
 | 
						|
	    v[0] = 1.f;
 | 
						|
 | 
						|
/*           Sweep */
 | 
						|
 | 
						|
	    i__2 = ilast - 2;
 | 
						|
	    for (j = istart; j <= i__2; ++j) {
 | 
						|
 | 
						|
/*              All but last elements: use 3x3 Householder transforms. */
 | 
						|
 | 
						|
/*              Zero (j-1)st column of A */
 | 
						|
 | 
						|
		if (j > istart) {
 | 
						|
		    v[0] = h__[j + (j - 1) * h_dim1];
 | 
						|
		    v[1] = h__[j + 1 + (j - 1) * h_dim1];
 | 
						|
		    v[2] = h__[j + 2 + (j - 1) * h_dim1];
 | 
						|
 | 
						|
		    slarfg_(&c__3, &h__[j + (j - 1) * h_dim1], &v[1], &c__1, &
 | 
						|
			    tau);
 | 
						|
		    v[0] = 1.f;
 | 
						|
		    h__[j + 1 + (j - 1) * h_dim1] = 0.f;
 | 
						|
		    h__[j + 2 + (j - 1) * h_dim1] = 0.f;
 | 
						|
		}
 | 
						|
 | 
						|
		i__3 = ilastm;
 | 
						|
		for (jc = j; jc <= i__3; ++jc) {
 | 
						|
		    temp = tau * (h__[j + jc * h_dim1] + v[1] * h__[j + 1 + 
 | 
						|
			    jc * h_dim1] + v[2] * h__[j + 2 + jc * h_dim1]);
 | 
						|
		    h__[j + jc * h_dim1] -= temp;
 | 
						|
		    h__[j + 1 + jc * h_dim1] -= temp * v[1];
 | 
						|
		    h__[j + 2 + jc * h_dim1] -= temp * v[2];
 | 
						|
		    temp2 = tau * (t[j + jc * t_dim1] + v[1] * t[j + 1 + jc * 
 | 
						|
			    t_dim1] + v[2] * t[j + 2 + jc * t_dim1]);
 | 
						|
		    t[j + jc * t_dim1] -= temp2;
 | 
						|
		    t[j + 1 + jc * t_dim1] -= temp2 * v[1];
 | 
						|
		    t[j + 2 + jc * t_dim1] -= temp2 * v[2];
 | 
						|
/* L230: */
 | 
						|
		}
 | 
						|
		if (ilq) {
 | 
						|
		    i__3 = *n;
 | 
						|
		    for (jr = 1; jr <= i__3; ++jr) {
 | 
						|
			temp = tau * (q[jr + j * q_dim1] + v[1] * q[jr + (j + 
 | 
						|
				1) * q_dim1] + v[2] * q[jr + (j + 2) * q_dim1]
 | 
						|
				);
 | 
						|
			q[jr + j * q_dim1] -= temp;
 | 
						|
			q[jr + (j + 1) * q_dim1] -= temp * v[1];
 | 
						|
			q[jr + (j + 2) * q_dim1] -= temp * v[2];
 | 
						|
/* L240: */
 | 
						|
		    }
 | 
						|
		}
 | 
						|
 | 
						|
/*              Zero j-th column of B (see SLAGBC for details) */
 | 
						|
 | 
						|
/*              Swap rows to pivot */
 | 
						|
 | 
						|
		ilpivt = FALSE_;
 | 
						|
/* Computing MAX */
 | 
						|
		r__3 = (r__1 = t[j + 1 + (j + 1) * t_dim1], abs(r__1)), r__4 =
 | 
						|
			 (r__2 = t[j + 1 + (j + 2) * t_dim1], abs(r__2));
 | 
						|
		temp = f2cmax(r__3,r__4);
 | 
						|
/* Computing MAX */
 | 
						|
		r__3 = (r__1 = t[j + 2 + (j + 1) * t_dim1], abs(r__1)), r__4 =
 | 
						|
			 (r__2 = t[j + 2 + (j + 2) * t_dim1], abs(r__2));
 | 
						|
		temp2 = f2cmax(r__3,r__4);
 | 
						|
		if (f2cmax(temp,temp2) < safmin) {
 | 
						|
		    scale = 0.f;
 | 
						|
		    u1 = 1.f;
 | 
						|
		    u2 = 0.f;
 | 
						|
		    goto L250;
 | 
						|
		} else if (temp >= temp2) {
 | 
						|
		    w11 = t[j + 1 + (j + 1) * t_dim1];
 | 
						|
		    w21 = t[j + 2 + (j + 1) * t_dim1];
 | 
						|
		    w12 = t[j + 1 + (j + 2) * t_dim1];
 | 
						|
		    w22 = t[j + 2 + (j + 2) * t_dim1];
 | 
						|
		    u1 = t[j + 1 + j * t_dim1];
 | 
						|
		    u2 = t[j + 2 + j * t_dim1];
 | 
						|
		} else {
 | 
						|
		    w21 = t[j + 1 + (j + 1) * t_dim1];
 | 
						|
		    w11 = t[j + 2 + (j + 1) * t_dim1];
 | 
						|
		    w22 = t[j + 1 + (j + 2) * t_dim1];
 | 
						|
		    w12 = t[j + 2 + (j + 2) * t_dim1];
 | 
						|
		    u2 = t[j + 1 + j * t_dim1];
 | 
						|
		    u1 = t[j + 2 + j * t_dim1];
 | 
						|
		}
 | 
						|
 | 
						|
/*              Swap columns if nec. */
 | 
						|
 | 
						|
		if (abs(w12) > abs(w11)) {
 | 
						|
		    ilpivt = TRUE_;
 | 
						|
		    temp = w12;
 | 
						|
		    temp2 = w22;
 | 
						|
		    w12 = w11;
 | 
						|
		    w22 = w21;
 | 
						|
		    w11 = temp;
 | 
						|
		    w21 = temp2;
 | 
						|
		}
 | 
						|
 | 
						|
/*              LU-factor */
 | 
						|
 | 
						|
		temp = w21 / w11;
 | 
						|
		u2 -= temp * u1;
 | 
						|
		w22 -= temp * w12;
 | 
						|
		w21 = 0.f;
 | 
						|
 | 
						|
/*              Compute SCALE */
 | 
						|
 | 
						|
		scale = 1.f;
 | 
						|
		if (abs(w22) < safmin) {
 | 
						|
		    scale = 0.f;
 | 
						|
		    u2 = 1.f;
 | 
						|
		    u1 = -w12 / w11;
 | 
						|
		    goto L250;
 | 
						|
		}
 | 
						|
		if (abs(w22) < abs(u2)) {
 | 
						|
		    scale = (r__1 = w22 / u2, abs(r__1));
 | 
						|
		}
 | 
						|
		if (abs(w11) < abs(u1)) {
 | 
						|
/* Computing MIN */
 | 
						|
		    r__2 = scale, r__3 = (r__1 = w11 / u1, abs(r__1));
 | 
						|
		    scale = f2cmin(r__2,r__3);
 | 
						|
		}
 | 
						|
 | 
						|
/*              Solve */
 | 
						|
 | 
						|
		u2 = scale * u2 / w22;
 | 
						|
		u1 = (scale * u1 - w12 * u2) / w11;
 | 
						|
 | 
						|
L250:
 | 
						|
		if (ilpivt) {
 | 
						|
		    temp = u2;
 | 
						|
		    u2 = u1;
 | 
						|
		    u1 = temp;
 | 
						|
		}
 | 
						|
 | 
						|
/*              Compute Householder Vector */
 | 
						|
 | 
						|
/* Computing 2nd power */
 | 
						|
		r__1 = scale;
 | 
						|
/* Computing 2nd power */
 | 
						|
		r__2 = u1;
 | 
						|
/* Computing 2nd power */
 | 
						|
		r__3 = u2;
 | 
						|
		t1 = sqrt(r__1 * r__1 + r__2 * r__2 + r__3 * r__3);
 | 
						|
		tau = scale / t1 + 1.f;
 | 
						|
		vs = -1.f / (scale + t1);
 | 
						|
		v[0] = 1.f;
 | 
						|
		v[1] = vs * u1;
 | 
						|
		v[2] = vs * u2;
 | 
						|
 | 
						|
/*              Apply transformations from the right. */
 | 
						|
 | 
						|
/* Computing MIN */
 | 
						|
		i__4 = j + 3;
 | 
						|
		i__3 = f2cmin(i__4,ilast);
 | 
						|
		for (jr = ifrstm; jr <= i__3; ++jr) {
 | 
						|
		    temp = tau * (h__[jr + j * h_dim1] + v[1] * h__[jr + (j + 
 | 
						|
			    1) * h_dim1] + v[2] * h__[jr + (j + 2) * h_dim1]);
 | 
						|
		    h__[jr + j * h_dim1] -= temp;
 | 
						|
		    h__[jr + (j + 1) * h_dim1] -= temp * v[1];
 | 
						|
		    h__[jr + (j + 2) * h_dim1] -= temp * v[2];
 | 
						|
/* L260: */
 | 
						|
		}
 | 
						|
		i__3 = j + 2;
 | 
						|
		for (jr = ifrstm; jr <= i__3; ++jr) {
 | 
						|
		    temp = tau * (t[jr + j * t_dim1] + v[1] * t[jr + (j + 1) *
 | 
						|
			     t_dim1] + v[2] * t[jr + (j + 2) * t_dim1]);
 | 
						|
		    t[jr + j * t_dim1] -= temp;
 | 
						|
		    t[jr + (j + 1) * t_dim1] -= temp * v[1];
 | 
						|
		    t[jr + (j + 2) * t_dim1] -= temp * v[2];
 | 
						|
/* L270: */
 | 
						|
		}
 | 
						|
		if (ilz) {
 | 
						|
		    i__3 = *n;
 | 
						|
		    for (jr = 1; jr <= i__3; ++jr) {
 | 
						|
			temp = tau * (z__[jr + j * z_dim1] + v[1] * z__[jr + (
 | 
						|
				j + 1) * z_dim1] + v[2] * z__[jr + (j + 2) * 
 | 
						|
				z_dim1]);
 | 
						|
			z__[jr + j * z_dim1] -= temp;
 | 
						|
			z__[jr + (j + 1) * z_dim1] -= temp * v[1];
 | 
						|
			z__[jr + (j + 2) * z_dim1] -= temp * v[2];
 | 
						|
/* L280: */
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		t[j + 1 + j * t_dim1] = 0.f;
 | 
						|
		t[j + 2 + j * t_dim1] = 0.f;
 | 
						|
/* L290: */
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Last elements: Use Givens rotations */
 | 
						|
 | 
						|
/*           Rotations from the left */
 | 
						|
 | 
						|
	    j = ilast - 1;
 | 
						|
	    temp = h__[j + (j - 1) * h_dim1];
 | 
						|
	    slartg_(&temp, &h__[j + 1 + (j - 1) * h_dim1], &c__, &s, &h__[j + 
 | 
						|
		    (j - 1) * h_dim1]);
 | 
						|
	    h__[j + 1 + (j - 1) * h_dim1] = 0.f;
 | 
						|
 | 
						|
	    i__2 = ilastm;
 | 
						|
	    for (jc = j; jc <= i__2; ++jc) {
 | 
						|
		temp = c__ * h__[j + jc * h_dim1] + s * h__[j + 1 + jc * 
 | 
						|
			h_dim1];
 | 
						|
		h__[j + 1 + jc * h_dim1] = -s * h__[j + jc * h_dim1] + c__ * 
 | 
						|
			h__[j + 1 + jc * h_dim1];
 | 
						|
		h__[j + jc * h_dim1] = temp;
 | 
						|
		temp2 = c__ * t[j + jc * t_dim1] + s * t[j + 1 + jc * t_dim1];
 | 
						|
		t[j + 1 + jc * t_dim1] = -s * t[j + jc * t_dim1] + c__ * t[j 
 | 
						|
			+ 1 + jc * t_dim1];
 | 
						|
		t[j + jc * t_dim1] = temp2;
 | 
						|
/* L300: */
 | 
						|
	    }
 | 
						|
	    if (ilq) {
 | 
						|
		i__2 = *n;
 | 
						|
		for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
		    temp = c__ * q[jr + j * q_dim1] + s * q[jr + (j + 1) * 
 | 
						|
			    q_dim1];
 | 
						|
		    q[jr + (j + 1) * q_dim1] = -s * q[jr + j * q_dim1] + c__ *
 | 
						|
			     q[jr + (j + 1) * q_dim1];
 | 
						|
		    q[jr + j * q_dim1] = temp;
 | 
						|
/* L310: */
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Rotations from the right. */
 | 
						|
 | 
						|
	    temp = t[j + 1 + (j + 1) * t_dim1];
 | 
						|
	    slartg_(&temp, &t[j + 1 + j * t_dim1], &c__, &s, &t[j + 1 + (j + 
 | 
						|
		    1) * t_dim1]);
 | 
						|
	    t[j + 1 + j * t_dim1] = 0.f;
 | 
						|
 | 
						|
	    i__2 = ilast;
 | 
						|
	    for (jr = ifrstm; jr <= i__2; ++jr) {
 | 
						|
		temp = c__ * h__[jr + (j + 1) * h_dim1] + s * h__[jr + j * 
 | 
						|
			h_dim1];
 | 
						|
		h__[jr + j * h_dim1] = -s * h__[jr + (j + 1) * h_dim1] + c__ *
 | 
						|
			 h__[jr + j * h_dim1];
 | 
						|
		h__[jr + (j + 1) * h_dim1] = temp;
 | 
						|
/* L320: */
 | 
						|
	    }
 | 
						|
	    i__2 = ilast - 1;
 | 
						|
	    for (jr = ifrstm; jr <= i__2; ++jr) {
 | 
						|
		temp = c__ * t[jr + (j + 1) * t_dim1] + s * t[jr + j * t_dim1]
 | 
						|
			;
 | 
						|
		t[jr + j * t_dim1] = -s * t[jr + (j + 1) * t_dim1] + c__ * t[
 | 
						|
			jr + j * t_dim1];
 | 
						|
		t[jr + (j + 1) * t_dim1] = temp;
 | 
						|
/* L330: */
 | 
						|
	    }
 | 
						|
	    if (ilz) {
 | 
						|
		i__2 = *n;
 | 
						|
		for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
		    temp = c__ * z__[jr + (j + 1) * z_dim1] + s * z__[jr + j *
 | 
						|
			     z_dim1];
 | 
						|
		    z__[jr + j * z_dim1] = -s * z__[jr + (j + 1) * z_dim1] + 
 | 
						|
			    c__ * z__[jr + j * z_dim1];
 | 
						|
		    z__[jr + (j + 1) * z_dim1] = temp;
 | 
						|
/* L340: */
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*           End of Double-Shift code */
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	goto L350;
 | 
						|
 | 
						|
/*        End of iteration loop */
 | 
						|
 | 
						|
L350:
 | 
						|
/* L360: */
 | 
						|
	;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Drop-through = non-convergence */
 | 
						|
 | 
						|
    *info = ilast;
 | 
						|
    goto L420;
 | 
						|
 | 
						|
/*     Successful completion of all QZ steps */
 | 
						|
 | 
						|
L380:
 | 
						|
 | 
						|
/*     Set Eigenvalues 1:ILO-1 */
 | 
						|
 | 
						|
    i__1 = *ilo - 1;
 | 
						|
    for (j = 1; j <= i__1; ++j) {
 | 
						|
	if (t[j + j * t_dim1] < 0.f) {
 | 
						|
	    if (ilschr) {
 | 
						|
		i__2 = j;
 | 
						|
		for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
		    h__[jr + j * h_dim1] = -h__[jr + j * h_dim1];
 | 
						|
		    t[jr + j * t_dim1] = -t[jr + j * t_dim1];
 | 
						|
/* L390: */
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
		h__[j + j * h_dim1] = -h__[j + j * h_dim1];
 | 
						|
		t[j + j * t_dim1] = -t[j + j * t_dim1];
 | 
						|
	    }
 | 
						|
	    if (ilz) {
 | 
						|
		i__2 = *n;
 | 
						|
		for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
		    z__[jr + j * z_dim1] = -z__[jr + j * z_dim1];
 | 
						|
/* L400: */
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	alphar[j] = h__[j + j * h_dim1];
 | 
						|
	alphai[j] = 0.f;
 | 
						|
	beta[j] = t[j + j * t_dim1];
 | 
						|
/* L410: */
 | 
						|
    }
 | 
						|
 | 
						|
/*     Normal Termination */
 | 
						|
 | 
						|
    *info = 0;
 | 
						|
 | 
						|
/*     Exit (other than argument error) -- return optimal workspace size */
 | 
						|
 | 
						|
L420:
 | 
						|
    work[1] = (real) (*n);
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of SHGEQZ */
 | 
						|
 | 
						|
} /* shgeqz_ */
 | 
						|
 |