370 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			370 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DORMBR
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DORMBR + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dormbr.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dormbr.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dormbr.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
 | 
						|
*                          LDC, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          SIDE, TRANS, VECT
 | 
						|
*       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C
 | 
						|
*> with
 | 
						|
*>                 SIDE = 'L'     SIDE = 'R'
 | 
						|
*> TRANS = 'N':      Q * C          C * Q
 | 
						|
*> TRANS = 'T':      Q**T * C       C * Q**T
 | 
						|
*>
 | 
						|
*> If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C
 | 
						|
*> with
 | 
						|
*>                 SIDE = 'L'     SIDE = 'R'
 | 
						|
*> TRANS = 'N':      P * C          C * P
 | 
						|
*> TRANS = 'T':      P**T * C       C * P**T
 | 
						|
*>
 | 
						|
*> Here Q and P**T are the orthogonal matrices determined by DGEBRD when
 | 
						|
*> reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and
 | 
						|
*> P**T are defined as products of elementary reflectors H(i) and G(i)
 | 
						|
*> respectively.
 | 
						|
*>
 | 
						|
*> Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
 | 
						|
*> order of the orthogonal matrix Q or P**T that is applied.
 | 
						|
*>
 | 
						|
*> If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
 | 
						|
*> if nq >= k, Q = H(1) H(2) . . . H(k);
 | 
						|
*> if nq < k, Q = H(1) H(2) . . . H(nq-1).
 | 
						|
*>
 | 
						|
*> If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
 | 
						|
*> if k < nq, P = G(1) G(2) . . . G(k);
 | 
						|
*> if k >= nq, P = G(1) G(2) . . . G(nq-1).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] VECT
 | 
						|
*> \verbatim
 | 
						|
*>          VECT is CHARACTER*1
 | 
						|
*>          = 'Q': apply Q or Q**T;
 | 
						|
*>          = 'P': apply P or P**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SIDE
 | 
						|
*> \verbatim
 | 
						|
*>          SIDE is CHARACTER*1
 | 
						|
*>          = 'L': apply Q, Q**T, P or P**T from the Left;
 | 
						|
*>          = 'R': apply Q, Q**T, P or P**T from the Right.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>          = 'N':  No transpose, apply Q  or P;
 | 
						|
*>          = 'T':  Transpose, apply Q**T or P**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix C. M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix C. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>          If VECT = 'Q', the number of columns in the original
 | 
						|
*>          matrix reduced by DGEBRD.
 | 
						|
*>          If VECT = 'P', the number of rows in the original
 | 
						|
*>          matrix reduced by DGEBRD.
 | 
						|
*>          K >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension
 | 
						|
*>                                (LDA,min(nq,K)) if VECT = 'Q'
 | 
						|
*>                                (LDA,nq)        if VECT = 'P'
 | 
						|
*>          The vectors which define the elementary reflectors H(i) and
 | 
						|
*>          G(i), whose products determine the matrices Q and P, as
 | 
						|
*>          returned by DGEBRD.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.
 | 
						|
*>          If VECT = 'Q', LDA >= max(1,nq);
 | 
						|
*>          if VECT = 'P', LDA >= max(1,min(nq,K)).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is DOUBLE PRECISION array, dimension (min(nq,K))
 | 
						|
*>          TAU(i) must contain the scalar factor of the elementary
 | 
						|
*>          reflector H(i) or G(i) which determines Q or P, as returned
 | 
						|
*>          by DGEBRD in the array argument TAUQ or TAUP.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is DOUBLE PRECISION array, dimension (LDC,N)
 | 
						|
*>          On entry, the M-by-N matrix C.
 | 
						|
*>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
 | 
						|
*>          or P*C or P**T*C or C*P or C*P**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>          The leading dimension of the array C. LDC >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.
 | 
						|
*>          If SIDE = 'L', LWORK >= max(1,N);
 | 
						|
*>          if SIDE = 'R', LWORK >= max(1,M).
 | 
						|
*>          For optimum performance LWORK >= N*NB if SIDE = 'L', and
 | 
						|
*>          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
 | 
						|
*>          blocksize.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
 | 
						|
     $                   LDC, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          SIDE, TRANS, VECT
 | 
						|
      INTEGER            INFO, K, LDA, LDC, LWORK, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            APPLYQ, LEFT, LQUERY, NOTRAN
 | 
						|
      CHARACTER          TRANST
 | 
						|
      INTEGER            I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      EXTERNAL           LSAME, ILAENV
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DORMLQ, DORMQR, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      APPLYQ = LSAME( VECT, 'Q' )
 | 
						|
      LEFT = LSAME( SIDE, 'L' )
 | 
						|
      NOTRAN = LSAME( TRANS, 'N' )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
*
 | 
						|
*     NQ is the order of Q or P and NW is the minimum dimension of WORK
 | 
						|
*
 | 
						|
      IF( LEFT ) THEN
 | 
						|
         NQ = M
 | 
						|
         NW = MAX( 1, N )
 | 
						|
      ELSE
 | 
						|
         NQ = N
 | 
						|
         NW = MAX( 1, M )
 | 
						|
      END IF
 | 
						|
      IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( M.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( K.LT.0 ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( ( APPLYQ .AND. LDA.LT.MAX( 1, NQ ) ) .OR.
 | 
						|
     $         ( .NOT.APPLYQ .AND. LDA.LT.MAX( 1, MIN( NQ, K ) ) ) )
 | 
						|
     $          THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -11
 | 
						|
      ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
 | 
						|
         INFO = -13
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         IF( APPLYQ ) THEN
 | 
						|
            IF( LEFT ) THEN
 | 
						|
               NB = ILAENV( 1, 'DORMQR', SIDE // TRANS, M-1, N, M-1,
 | 
						|
     $              -1 )
 | 
						|
            ELSE
 | 
						|
               NB = ILAENV( 1, 'DORMQR', SIDE // TRANS, M, N-1, N-1,
 | 
						|
     $              -1 )
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            IF( LEFT ) THEN
 | 
						|
               NB = ILAENV( 1, 'DORMLQ', SIDE // TRANS, M-1, N, M-1,
 | 
						|
     $              -1 )
 | 
						|
            ELSE
 | 
						|
               NB = ILAENV( 1, 'DORMLQ', SIDE // TRANS, M, N-1, N-1,
 | 
						|
     $              -1 )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         LWKOPT = NW*NB
 | 
						|
         WORK( 1 ) = LWKOPT
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DORMBR', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      WORK( 1 ) = 1
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( APPLYQ ) THEN
 | 
						|
*
 | 
						|
*        Apply Q
 | 
						|
*
 | 
						|
         IF( NQ.GE.K ) THEN
 | 
						|
*
 | 
						|
*           Q was determined by a call to DGEBRD with nq >= k
 | 
						|
*
 | 
						|
            CALL DORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
 | 
						|
     $                   WORK, LWORK, IINFO )
 | 
						|
         ELSE IF( NQ.GT.1 ) THEN
 | 
						|
*
 | 
						|
*           Q was determined by a call to DGEBRD with nq < k
 | 
						|
*
 | 
						|
            IF( LEFT ) THEN
 | 
						|
               MI = M - 1
 | 
						|
               NI = N
 | 
						|
               I1 = 2
 | 
						|
               I2 = 1
 | 
						|
            ELSE
 | 
						|
               MI = M
 | 
						|
               NI = N - 1
 | 
						|
               I1 = 1
 | 
						|
               I2 = 2
 | 
						|
            END IF
 | 
						|
            CALL DORMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU,
 | 
						|
     $                   C( I1, I2 ), LDC, WORK, LWORK, IINFO )
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Apply P
 | 
						|
*
 | 
						|
         IF( NOTRAN ) THEN
 | 
						|
            TRANST = 'T'
 | 
						|
         ELSE
 | 
						|
            TRANST = 'N'
 | 
						|
         END IF
 | 
						|
         IF( NQ.GT.K ) THEN
 | 
						|
*
 | 
						|
*           P was determined by a call to DGEBRD with nq > k
 | 
						|
*
 | 
						|
            CALL DORMLQ( SIDE, TRANST, M, N, K, A, LDA, TAU, C, LDC,
 | 
						|
     $                   WORK, LWORK, IINFO )
 | 
						|
         ELSE IF( NQ.GT.1 ) THEN
 | 
						|
*
 | 
						|
*           P was determined by a call to DGEBRD with nq <= k
 | 
						|
*
 | 
						|
            IF( LEFT ) THEN
 | 
						|
               MI = M - 1
 | 
						|
               NI = N
 | 
						|
               I1 = 2
 | 
						|
               I2 = 1
 | 
						|
            ELSE
 | 
						|
               MI = M
 | 
						|
               NI = N - 1
 | 
						|
               I1 = 1
 | 
						|
               I2 = 2
 | 
						|
            END IF
 | 
						|
            CALL DORMLQ( SIDE, TRANST, MI, NI, NQ-1, A( 1, 2 ), LDA,
 | 
						|
     $                   TAU, C( I1, I2 ), LDC, WORK, LWORK, IINFO )
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      WORK( 1 ) = LWKOPT
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DORMBR
 | 
						|
*
 | 
						|
      END
 |