1039 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1039 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__2 = 2;
 | 
						|
static integer c__1 = 1;
 | 
						|
static integer c_n1 = -1;
 | 
						|
 | 
						|
/* > \brief \b CSTEIN */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download CSTEIN + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cstein.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cstein.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cstein.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE CSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, */
 | 
						|
/*                          IWORK, IFAIL, INFO ) */
 | 
						|
 | 
						|
/*       INTEGER            INFO, LDZ, M, N */
 | 
						|
/*       INTEGER            IBLOCK( * ), IFAIL( * ), ISPLIT( * ), */
 | 
						|
/*      $                   IWORK( * ) */
 | 
						|
/*       REAL               D( * ), E( * ), W( * ), WORK( * ) */
 | 
						|
/*       COMPLEX            Z( LDZ, * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > CSTEIN computes the eigenvectors of a real symmetric tridiagonal */
 | 
						|
/* > matrix T corresponding to specified eigenvalues, using inverse */
 | 
						|
/* > iteration. */
 | 
						|
/* > */
 | 
						|
/* > The maximum number of iterations allowed for each eigenvector is */
 | 
						|
/* > specified by an internal parameter MAXITS (currently set to 5). */
 | 
						|
/* > */
 | 
						|
/* > Although the eigenvectors are real, they are stored in a complex */
 | 
						|
/* > array, which may be passed to CUNMTR or CUPMTR for back */
 | 
						|
/* > transformation to the eigenvectors of a complex Hermitian matrix */
 | 
						|
/* > which was reduced to tridiagonal form. */
 | 
						|
/* > */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrix.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] D */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          D is REAL array, dimension (N) */
 | 
						|
/* >          The n diagonal elements of the tridiagonal matrix T. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] E */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          E is REAL array, dimension (N-1) */
 | 
						|
/* >          The (n-1) subdiagonal elements of the tridiagonal matrix */
 | 
						|
/* >          T, stored in elements 1 to N-1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] M */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          M is INTEGER */
 | 
						|
/* >          The number of eigenvectors to be found.  0 <= M <= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] W */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          W is REAL array, dimension (N) */
 | 
						|
/* >          The first M elements of W contain the eigenvalues for */
 | 
						|
/* >          which eigenvectors are to be computed.  The eigenvalues */
 | 
						|
/* >          should be grouped by split-off block and ordered from */
 | 
						|
/* >          smallest to largest within the block.  ( The output array */
 | 
						|
/* >          W from SSTEBZ with ORDER = 'B' is expected here. ) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] IBLOCK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IBLOCK is INTEGER array, dimension (N) */
 | 
						|
/* >          The submatrix indices associated with the corresponding */
 | 
						|
/* >          eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to */
 | 
						|
/* >          the first submatrix from the top, =2 if W(i) belongs to */
 | 
						|
/* >          the second submatrix, etc.  ( The output array IBLOCK */
 | 
						|
/* >          from SSTEBZ is expected here. ) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] ISPLIT */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ISPLIT is INTEGER array, dimension (N) */
 | 
						|
/* >          The splitting points, at which T breaks up into submatrices. */
 | 
						|
/* >          The first submatrix consists of rows/columns 1 to */
 | 
						|
/* >          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 */
 | 
						|
/* >          through ISPLIT( 2 ), etc. */
 | 
						|
/* >          ( The output array ISPLIT from SSTEBZ is expected here. ) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] Z */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          Z is COMPLEX array, dimension (LDZ, M) */
 | 
						|
/* >          The computed eigenvectors.  The eigenvector associated */
 | 
						|
/* >          with the eigenvalue W(i) is stored in the i-th column of */
 | 
						|
/* >          Z.  Any vector which fails to converge is set to its current */
 | 
						|
/* >          iterate after MAXITS iterations. */
 | 
						|
/* >          The imaginary parts of the eigenvectors are set to zero. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDZ */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDZ is INTEGER */
 | 
						|
/* >          The leading dimension of the array Z.  LDZ >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is REAL array, dimension (5*N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] IWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IWORK is INTEGER array, dimension (N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] IFAIL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IFAIL is INTEGER array, dimension (M) */
 | 
						|
/* >          On normal exit, all elements of IFAIL are zero. */
 | 
						|
/* >          If one or more eigenvectors fail to converge after */
 | 
						|
/* >          MAXITS iterations, then their indices are stored in */
 | 
						|
/* >          array IFAIL. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0: successful exit */
 | 
						|
/* >          < 0: if INFO = -i, the i-th argument had an illegal value */
 | 
						|
/* >          > 0: if INFO = i, then i eigenvectors failed to converge */
 | 
						|
/* >               in MAXITS iterations.  Their indices are stored in */
 | 
						|
/* >               array IFAIL. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/* > \par Internal Parameters: */
 | 
						|
/*  ========================= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* >  MAXITS  INTEGER, default = 5 */
 | 
						|
/* >          The maximum number of iterations performed. */
 | 
						|
/* > */
 | 
						|
/* >  EXTRA   INTEGER, default = 2 */
 | 
						|
/* >          The number of iterations performed after norm growth */
 | 
						|
/* >          criterion is satisfied, should be at least 1. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup complexOTHERcomputational */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void cstein_(integer *n, real *d__, real *e, integer *m, real 
 | 
						|
	*w, integer *iblock, integer *isplit, complex *z__, integer *ldz, 
 | 
						|
	real *work, integer *iwork, integer *ifail, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
 | 
						|
    real r__1, r__2, r__3, r__4, r__5;
 | 
						|
    complex q__1;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer jblk, nblk, jmax;
 | 
						|
    extern real snrm2_(integer *, real *, integer *);
 | 
						|
    integer i__, j, iseed[4], gpind, iinfo;
 | 
						|
    extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
 | 
						|
    integer b1, j1;
 | 
						|
    extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, 
 | 
						|
	    integer *);
 | 
						|
    real ortol;
 | 
						|
    integer indrv1, indrv2, indrv3, indrv4, indrv5, bn, jr;
 | 
						|
    real xj;
 | 
						|
    extern real slamch_(char *);
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | 
						|
    extern void slagtf_(
 | 
						|
	    integer *, real *, real *, real *, real *, real *, real *, 
 | 
						|
	    integer *, integer *);
 | 
						|
    integer nrmchk;
 | 
						|
    extern integer isamax_(integer *, real *, integer *);
 | 
						|
    extern /* Subroutine */ void slagts_(integer *, integer *, real *, real *, 
 | 
						|
	    real *, real *, integer *, real *, real *, integer *);
 | 
						|
    integer blksiz;
 | 
						|
    real onenrm, pertol;
 | 
						|
    extern /* Subroutine */ void slarnv_(integer *, integer *, integer *, real 
 | 
						|
	    *);
 | 
						|
    real stpcrt, scl, eps, ctr, sep, nrm, tol;
 | 
						|
    integer its;
 | 
						|
    real xjm, eps1;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/* ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --d__;
 | 
						|
    --e;
 | 
						|
    --w;
 | 
						|
    --iblock;
 | 
						|
    --isplit;
 | 
						|
    z_dim1 = *ldz;
 | 
						|
    z_offset = 1 + z_dim1 * 1;
 | 
						|
    z__ -= z_offset;
 | 
						|
    --work;
 | 
						|
    --iwork;
 | 
						|
    --ifail;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    i__1 = *m;
 | 
						|
    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	ifail[i__] = 0;
 | 
						|
/* L10: */
 | 
						|
    }
 | 
						|
 | 
						|
    if (*n < 0) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*m < 0 || *m > *n) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (*ldz < f2cmax(1,*n)) {
 | 
						|
	*info = -9;
 | 
						|
    } else {
 | 
						|
	i__1 = *m;
 | 
						|
	for (j = 2; j <= i__1; ++j) {
 | 
						|
	    if (iblock[j] < iblock[j - 1]) {
 | 
						|
		*info = -6;
 | 
						|
		goto L30;
 | 
						|
	    }
 | 
						|
	    if (iblock[j] == iblock[j - 1] && w[j] < w[j - 1]) {
 | 
						|
		*info = -5;
 | 
						|
		goto L30;
 | 
						|
	    }
 | 
						|
/* L20: */
 | 
						|
	}
 | 
						|
L30:
 | 
						|
	;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("CSTEIN", &i__1, (ftnlen)6);
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n == 0 || *m == 0) {
 | 
						|
	return;
 | 
						|
    } else if (*n == 1) {
 | 
						|
	i__1 = z_dim1 + 1;
 | 
						|
	z__[i__1].r = 1.f, z__[i__1].i = 0.f;
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Get machine constants. */
 | 
						|
 | 
						|
    eps = slamch_("Precision");
 | 
						|
 | 
						|
/*     Initialize seed for random number generator SLARNV. */
 | 
						|
 | 
						|
    for (i__ = 1; i__ <= 4; ++i__) {
 | 
						|
	iseed[i__ - 1] = 1;
 | 
						|
/* L40: */
 | 
						|
    }
 | 
						|
 | 
						|
/*     Initialize pointers. */
 | 
						|
 | 
						|
    indrv1 = 0;
 | 
						|
    indrv2 = indrv1 + *n;
 | 
						|
    indrv3 = indrv2 + *n;
 | 
						|
    indrv4 = indrv3 + *n;
 | 
						|
    indrv5 = indrv4 + *n;
 | 
						|
 | 
						|
/*     Compute eigenvectors of matrix blocks. */
 | 
						|
 | 
						|
    j1 = 1;
 | 
						|
    i__1 = iblock[*m];
 | 
						|
    for (nblk = 1; nblk <= i__1; ++nblk) {
 | 
						|
 | 
						|
/*        Find starting and ending indices of block nblk. */
 | 
						|
 | 
						|
	if (nblk == 1) {
 | 
						|
	    b1 = 1;
 | 
						|
	} else {
 | 
						|
	    b1 = isplit[nblk - 1] + 1;
 | 
						|
	}
 | 
						|
	bn = isplit[nblk];
 | 
						|
	blksiz = bn - b1 + 1;
 | 
						|
	if (blksiz == 1) {
 | 
						|
	    goto L60;
 | 
						|
	}
 | 
						|
	gpind = j1;
 | 
						|
 | 
						|
/*        Compute reorthogonalization criterion and stopping criterion. */
 | 
						|
 | 
						|
	onenrm = (r__1 = d__[b1], abs(r__1)) + (r__2 = e[b1], abs(r__2));
 | 
						|
/* Computing MAX */
 | 
						|
	r__3 = onenrm, r__4 = (r__1 = d__[bn], abs(r__1)) + (r__2 = e[bn - 1],
 | 
						|
		 abs(r__2));
 | 
						|
	onenrm = f2cmax(r__3,r__4);
 | 
						|
	i__2 = bn - 1;
 | 
						|
	for (i__ = b1 + 1; i__ <= i__2; ++i__) {
 | 
						|
/* Computing MAX */
 | 
						|
	    r__4 = onenrm, r__5 = (r__1 = d__[i__], abs(r__1)) + (r__2 = e[
 | 
						|
		    i__ - 1], abs(r__2)) + (r__3 = e[i__], abs(r__3));
 | 
						|
	    onenrm = f2cmax(r__4,r__5);
 | 
						|
/* L50: */
 | 
						|
	}
 | 
						|
	ortol = onenrm * .001f;
 | 
						|
 | 
						|
	stpcrt = sqrt(.1f / blksiz);
 | 
						|
 | 
						|
/*        Loop through eigenvalues of block nblk. */
 | 
						|
 | 
						|
L60:
 | 
						|
	jblk = 0;
 | 
						|
	i__2 = *m;
 | 
						|
	for (j = j1; j <= i__2; ++j) {
 | 
						|
	    if (iblock[j] != nblk) {
 | 
						|
		j1 = j;
 | 
						|
		goto L180;
 | 
						|
	    }
 | 
						|
	    ++jblk;
 | 
						|
	    xj = w[j];
 | 
						|
 | 
						|
/*           Skip all the work if the block size is one. */
 | 
						|
 | 
						|
	    if (blksiz == 1) {
 | 
						|
		work[indrv1 + 1] = 1.f;
 | 
						|
		goto L140;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           If eigenvalues j and j-1 are too close, add a relatively */
 | 
						|
/*           small perturbation. */
 | 
						|
 | 
						|
	    if (jblk > 1) {
 | 
						|
		eps1 = (r__1 = eps * xj, abs(r__1));
 | 
						|
		pertol = eps1 * 10.f;
 | 
						|
		sep = xj - xjm;
 | 
						|
		if (sep < pertol) {
 | 
						|
		    xj = xjm + pertol;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
	    its = 0;
 | 
						|
	    nrmchk = 0;
 | 
						|
 | 
						|
/*           Get random starting vector. */
 | 
						|
 | 
						|
	    slarnv_(&c__2, iseed, &blksiz, &work[indrv1 + 1]);
 | 
						|
 | 
						|
/*           Copy the matrix T so it won't be destroyed in factorization. */
 | 
						|
 | 
						|
	    scopy_(&blksiz, &d__[b1], &c__1, &work[indrv4 + 1], &c__1);
 | 
						|
	    i__3 = blksiz - 1;
 | 
						|
	    scopy_(&i__3, &e[b1], &c__1, &work[indrv2 + 2], &c__1);
 | 
						|
	    i__3 = blksiz - 1;
 | 
						|
	    scopy_(&i__3, &e[b1], &c__1, &work[indrv3 + 1], &c__1);
 | 
						|
 | 
						|
/*           Compute LU factors with partial pivoting  ( PT = LU ) */
 | 
						|
 | 
						|
	    tol = 0.f;
 | 
						|
	    slagtf_(&blksiz, &work[indrv4 + 1], &xj, &work[indrv2 + 2], &work[
 | 
						|
		    indrv3 + 1], &tol, &work[indrv5 + 1], &iwork[1], &iinfo);
 | 
						|
 | 
						|
/*           Update iteration count. */
 | 
						|
 | 
						|
L70:
 | 
						|
	    ++its;
 | 
						|
	    if (its > 5) {
 | 
						|
		goto L120;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Normalize and scale the righthand side vector Pb. */
 | 
						|
 | 
						|
	    jmax = isamax_(&blksiz, &work[indrv1 + 1], &c__1);
 | 
						|
/* Computing MAX */
 | 
						|
	    r__3 = eps, r__4 = (r__1 = work[indrv4 + blksiz], abs(r__1));
 | 
						|
	    scl = blksiz * onenrm * f2cmax(r__3,r__4) / (r__2 = work[indrv1 + 
 | 
						|
		    jmax], abs(r__2));
 | 
						|
	    sscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);
 | 
						|
 | 
						|
/*           Solve the system LU = Pb. */
 | 
						|
 | 
						|
	    slagts_(&c_n1, &blksiz, &work[indrv4 + 1], &work[indrv2 + 2], &
 | 
						|
		    work[indrv3 + 1], &work[indrv5 + 1], &iwork[1], &work[
 | 
						|
		    indrv1 + 1], &tol, &iinfo);
 | 
						|
 | 
						|
/*           Reorthogonalize by modified Gram-Schmidt if eigenvalues are */
 | 
						|
/*           close enough. */
 | 
						|
 | 
						|
	    if (jblk == 1) {
 | 
						|
		goto L110;
 | 
						|
	    }
 | 
						|
	    if ((r__1 = xj - xjm, abs(r__1)) > ortol) {
 | 
						|
		gpind = j;
 | 
						|
	    }
 | 
						|
	    if (gpind != j) {
 | 
						|
		i__3 = j - 1;
 | 
						|
		for (i__ = gpind; i__ <= i__3; ++i__) {
 | 
						|
		    ctr = 0.f;
 | 
						|
		    i__4 = blksiz;
 | 
						|
		    for (jr = 1; jr <= i__4; ++jr) {
 | 
						|
			i__5 = b1 - 1 + jr + i__ * z_dim1;
 | 
						|
			ctr += work[indrv1 + jr] * z__[i__5].r;
 | 
						|
/* L80: */
 | 
						|
		    }
 | 
						|
		    i__4 = blksiz;
 | 
						|
		    for (jr = 1; jr <= i__4; ++jr) {
 | 
						|
			i__5 = b1 - 1 + jr + i__ * z_dim1;
 | 
						|
			work[indrv1 + jr] -= ctr * z__[i__5].r;
 | 
						|
/* L90: */
 | 
						|
		    }
 | 
						|
/* L100: */
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Check the infinity norm of the iterate. */
 | 
						|
 | 
						|
L110:
 | 
						|
	    jmax = isamax_(&blksiz, &work[indrv1 + 1], &c__1);
 | 
						|
	    nrm = (r__1 = work[indrv1 + jmax], abs(r__1));
 | 
						|
 | 
						|
/*           Continue for additional iterations after norm reaches */
 | 
						|
/*           stopping criterion. */
 | 
						|
 | 
						|
	    if (nrm < stpcrt) {
 | 
						|
		goto L70;
 | 
						|
	    }
 | 
						|
	    ++nrmchk;
 | 
						|
	    if (nrmchk < 3) {
 | 
						|
		goto L70;
 | 
						|
	    }
 | 
						|
 | 
						|
	    goto L130;
 | 
						|
 | 
						|
/*           If stopping criterion was not satisfied, update info and */
 | 
						|
/*           store eigenvector number in array ifail. */
 | 
						|
 | 
						|
L120:
 | 
						|
	    ++(*info);
 | 
						|
	    ifail[*info] = j;
 | 
						|
 | 
						|
/*           Accept iterate as jth eigenvector. */
 | 
						|
 | 
						|
L130:
 | 
						|
	    scl = 1.f / snrm2_(&blksiz, &work[indrv1 + 1], &c__1);
 | 
						|
	    jmax = isamax_(&blksiz, &work[indrv1 + 1], &c__1);
 | 
						|
	    if (work[indrv1 + jmax] < 0.f) {
 | 
						|
		scl = -scl;
 | 
						|
	    }
 | 
						|
	    sscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);
 | 
						|
L140:
 | 
						|
	    i__3 = *n;
 | 
						|
	    for (i__ = 1; i__ <= i__3; ++i__) {
 | 
						|
		i__4 = i__ + j * z_dim1;
 | 
						|
		z__[i__4].r = 0.f, z__[i__4].i = 0.f;
 | 
						|
/* L150: */
 | 
						|
	    }
 | 
						|
	    i__3 = blksiz;
 | 
						|
	    for (i__ = 1; i__ <= i__3; ++i__) {
 | 
						|
		i__4 = b1 + i__ - 1 + j * z_dim1;
 | 
						|
		i__5 = indrv1 + i__;
 | 
						|
		q__1.r = work[i__5], q__1.i = 0.f;
 | 
						|
		z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
 | 
						|
/* L160: */
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Save the shift to check eigenvalue spacing at next */
 | 
						|
/*           iteration. */
 | 
						|
 | 
						|
	    xjm = xj;
 | 
						|
 | 
						|
/* L170: */
 | 
						|
	}
 | 
						|
L180:
 | 
						|
	;
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of CSTEIN */
 | 
						|
 | 
						|
} /* cstein_ */
 | 
						|
 |