505 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			505 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLAHEF_AA
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CLAHEF_AA + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahef_aa.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahef_aa.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahef_aa.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CLAHEF_AA( UPLO, J1, M, NB, A, LDA, IPIV,
 | 
						|
*                             H, LDH, WORK )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER    UPLO
 | 
						|
*       INTEGER      J1, M, NB, LDA, LDH
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER      IPIV( * )
 | 
						|
*       COMPLEX      A( LDA, * ), H( LDH, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CLAHEF_AA factorizes a panel of a complex hermitian matrix A using
 | 
						|
*> the Aasen's algorithm. The panel consists of a set of NB rows of A
 | 
						|
*> when UPLO is U, or a set of NB columns when UPLO is L.
 | 
						|
*>
 | 
						|
*> In order to factorize the panel, the Aasen's algorithm requires the
 | 
						|
*> last row, or column, of the previous panel. The first row, or column,
 | 
						|
*> of A is set to be the first row, or column, of an identity matrix,
 | 
						|
*> which is used to factorize the first panel.
 | 
						|
*>
 | 
						|
*> The resulting J-th row of U, or J-th column of L, is stored in the
 | 
						|
*> (J-1)-th row, or column, of A (without the unit diagonals), while
 | 
						|
*> the diagonal and subdiagonal of A are overwritten by those of T.
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangle of A is stored;
 | 
						|
*>          = 'L':  Lower triangle of A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] J1
 | 
						|
*> \verbatim
 | 
						|
*>          J1 is INTEGER
 | 
						|
*>          The location of the first row, or column, of the panel
 | 
						|
*>          within the submatrix of A, passed to this routine, e.g.,
 | 
						|
*>          when called by CHETRF_AA, for the first panel, J1 is 1,
 | 
						|
*>          while for the remaining panels, J1 is 2.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The dimension of the submatrix. M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NB
 | 
						|
*> \verbatim
 | 
						|
*>          NB is INTEGER
 | 
						|
*>          The dimension of the panel to be facotorized.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,M) for
 | 
						|
*>          the first panel, while dimension (LDA,M+1) for the
 | 
						|
*>          remaining panels.
 | 
						|
*>
 | 
						|
*>          On entry, A contains the last row, or column, of
 | 
						|
*>          the previous panel, and the trailing submatrix of A
 | 
						|
*>          to be factorized, except for the first panel, only
 | 
						|
*>          the panel is passed.
 | 
						|
*>
 | 
						|
*>          On exit, the leading panel is factorized.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          Details of the row and column interchanges,
 | 
						|
*>          the row and column k were interchanged with the row and
 | 
						|
*>          column IPIV(k).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] H
 | 
						|
*> \verbatim
 | 
						|
*>          H is COMPLEX workspace, dimension (LDH,NB).
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDH
 | 
						|
*> \verbatim
 | 
						|
*>          LDH is INTEGER
 | 
						|
*>          The leading dimension of the workspace H. LDH >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX workspace, dimension (M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complexSYcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CLAHEF_AA( UPLO, J1, M, NB, A, LDA, IPIV,
 | 
						|
     $                      H, LDH, WORK )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
      IMPLICIT NONE
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER    UPLO
 | 
						|
      INTEGER      M, NB, J1, LDA, LDH
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER      IPIV( * )
 | 
						|
      COMPLEX      A( LDA, * ), H( LDH, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX      ZERO, ONE
 | 
						|
      PARAMETER    ( ZERO = (0.0E+0, 0.0E+0), ONE = (1.0E+0, 0.0E+0) )
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER      J, K, K1, I1, I2, MJ
 | 
						|
      COMPLEX      PIV, ALPHA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL      LSAME
 | 
						|
      INTEGER      ICAMAX, ILAENV
 | 
						|
      EXTERNAL     LSAME, ILAENV, ICAMAX
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL     CLACGV, CGEMV, CSCAL, CAXPY, CCOPY, CSWAP, CLASET,
 | 
						|
     $             XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC    REAL, CONJG, MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      J = 1
 | 
						|
*
 | 
						|
*     K1 is the first column of the panel to be factorized
 | 
						|
*     i.e.,  K1 is 2 for the first block column, and 1 for the rest of the blocks
 | 
						|
*
 | 
						|
      K1 = (2-J1)+1
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
*
 | 
						|
*        .....................................................
 | 
						|
*        Factorize A as U**T*D*U using the upper triangle of A
 | 
						|
*        .....................................................
 | 
						|
*
 | 
						|
 10      CONTINUE
 | 
						|
         IF ( J.GT.MIN(M, NB) )
 | 
						|
     $      GO TO 20
 | 
						|
*
 | 
						|
*        K is the column to be factorized
 | 
						|
*         when being called from CHETRF_AA,
 | 
						|
*         > for the first block column, J1 is 1, hence J1+J-1 is J,
 | 
						|
*         > for the rest of the columns, J1 is 2, and J1+J-1 is J+1,
 | 
						|
*
 | 
						|
         K = J1+J-1
 | 
						|
         IF( J.EQ.M ) THEN
 | 
						|
*
 | 
						|
*            Only need to compute T(J, J)
 | 
						|
*
 | 
						|
             MJ = 1
 | 
						|
         ELSE
 | 
						|
             MJ = M-J+1
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        H(J:N, J) := A(J, J:N) - H(J:N, 1:(J-1)) * L(J1:(J-1), J),
 | 
						|
*         where H(J:N, J) has been initialized to be A(J, J:N)
 | 
						|
*
 | 
						|
         IF( K.GT.2 ) THEN
 | 
						|
*
 | 
						|
*        K is the column to be factorized
 | 
						|
*         > for the first block column, K is J, skipping the first two
 | 
						|
*           columns
 | 
						|
*         > for the rest of the columns, K is J+1, skipping only the
 | 
						|
*           first column
 | 
						|
*
 | 
						|
            CALL CLACGV( J-K1, A( 1, J ), 1 )
 | 
						|
            CALL CGEMV( 'No transpose', MJ, J-K1,
 | 
						|
     $                 -ONE, H( J, K1 ), LDH,
 | 
						|
     $                       A( 1, J ), 1,
 | 
						|
     $                  ONE, H( J, J ), 1 )
 | 
						|
            CALL CLACGV( J-K1, A( 1, J ), 1 )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Copy H(i:n, i) into WORK
 | 
						|
*
 | 
						|
         CALL CCOPY( MJ, H( J, J ), 1, WORK( 1 ), 1 )
 | 
						|
*
 | 
						|
         IF( J.GT.K1 ) THEN
 | 
						|
*
 | 
						|
*           Compute WORK := WORK - L(J-1, J:N) * T(J-1,J),
 | 
						|
*            where A(J-1, J) stores T(J-1, J) and A(J-2, J:N) stores U(J-1, J:N)
 | 
						|
*
 | 
						|
            ALPHA = -CONJG( A( K-1, J ) )
 | 
						|
            CALL CAXPY( MJ, ALPHA, A( K-2, J ), LDA, WORK( 1 ), 1 )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Set A(J, J) = T(J, J)
 | 
						|
*
 | 
						|
         A( K, J ) = REAL( WORK( 1 ) )
 | 
						|
*
 | 
						|
         IF( J.LT.M ) THEN
 | 
						|
*
 | 
						|
*           Compute WORK(2:N) = T(J, J) L(J, (J+1):N)
 | 
						|
*            where A(J, J) stores T(J, J) and A(J-1, (J+1):N) stores U(J, (J+1):N)
 | 
						|
*
 | 
						|
            IF( K.GT.1 ) THEN
 | 
						|
               ALPHA = -A( K, J )
 | 
						|
               CALL CAXPY( M-J, ALPHA, A( K-1, J+1 ), LDA,
 | 
						|
     $                                 WORK( 2 ), 1 )
 | 
						|
            ENDIF
 | 
						|
*
 | 
						|
*           Find max(|WORK(2:n)|)
 | 
						|
*
 | 
						|
            I2 = ICAMAX( M-J, WORK( 2 ), 1 ) + 1
 | 
						|
            PIV = WORK( I2 )
 | 
						|
*
 | 
						|
*           Apply hermitian pivot
 | 
						|
*
 | 
						|
            IF( (I2.NE.2) .AND. (PIV.NE.0) ) THEN
 | 
						|
*
 | 
						|
*              Swap WORK(I1) and WORK(I2)
 | 
						|
*
 | 
						|
               I1 = 2
 | 
						|
               WORK( I2 ) = WORK( I1 )
 | 
						|
               WORK( I1 ) = PIV
 | 
						|
*
 | 
						|
*              Swap A(I1, I1+1:N) with A(I1+1:N, I2)
 | 
						|
*
 | 
						|
               I1 = I1+J-1
 | 
						|
               I2 = I2+J-1
 | 
						|
               CALL CSWAP( I2-I1-1, A( J1+I1-1, I1+1 ), LDA,
 | 
						|
     $                              A( J1+I1, I2 ), 1 )
 | 
						|
               CALL CLACGV( I2-I1, A( J1+I1-1, I1+1 ), LDA )
 | 
						|
               CALL CLACGV( I2-I1-1, A( J1+I1, I2 ), 1 )
 | 
						|
*
 | 
						|
*              Swap A(I1, I2+1:N) with A(I2, I2+1:N)
 | 
						|
*
 | 
						|
               IF( I2.LT.M )
 | 
						|
     $            CALL CSWAP( M-I2, A( J1+I1-1, I2+1 ), LDA,
 | 
						|
     $                              A( J1+I2-1, I2+1 ), LDA )
 | 
						|
*
 | 
						|
*              Swap A(I1, I1) with A(I2,I2)
 | 
						|
*
 | 
						|
               PIV = A( I1+J1-1, I1 )
 | 
						|
               A( J1+I1-1, I1 ) = A( J1+I2-1, I2 )
 | 
						|
               A( J1+I2-1, I2 ) = PIV
 | 
						|
*
 | 
						|
*              Swap H(I1, 1:J1) with H(I2, 1:J1)
 | 
						|
*
 | 
						|
               CALL CSWAP( I1-1, H( I1, 1 ), LDH, H( I2, 1 ), LDH )
 | 
						|
               IPIV( I1 ) = I2
 | 
						|
*
 | 
						|
               IF( I1.GT.(K1-1) ) THEN
 | 
						|
*
 | 
						|
*                 Swap L(1:I1-1, I1) with L(1:I1-1, I2),
 | 
						|
*                  skipping the first column
 | 
						|
*
 | 
						|
                  CALL CSWAP( I1-K1+1, A( 1, I1 ), 1,
 | 
						|
     $                                 A( 1, I2 ), 1 )
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
               IPIV( J+1 ) = J+1
 | 
						|
            ENDIF
 | 
						|
*
 | 
						|
*           Set A(J, J+1) = T(J, J+1)
 | 
						|
*
 | 
						|
            A( K, J+1 ) = WORK( 2 )
 | 
						|
*
 | 
						|
            IF( J.LT.NB ) THEN
 | 
						|
*
 | 
						|
*              Copy A(J+1:N, J+1) into H(J:N, J),
 | 
						|
*
 | 
						|
               CALL CCOPY( M-J, A( K+1, J+1 ), LDA,
 | 
						|
     $                          H( J+1, J+1 ), 1 )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Compute L(J+2, J+1) = WORK( 3:N ) / T(J, J+1),
 | 
						|
*            where A(J, J+1) = T(J, J+1) and A(J+2:N, J) = L(J+2:N, J+1)
 | 
						|
*
 | 
						|
            IF( J.LT.(M-1) ) THEN
 | 
						|
               IF( A( K, J+1 ).NE.ZERO ) THEN
 | 
						|
                  ALPHA = ONE / A( K, J+1 )
 | 
						|
                  CALL CCOPY( M-J-1, WORK( 3 ), 1, A( K, J+2 ), LDA )
 | 
						|
                  CALL CSCAL( M-J-1, ALPHA, A( K, J+2 ), LDA )
 | 
						|
               ELSE
 | 
						|
                  CALL CLASET( 'Full', 1, M-J-1, ZERO, ZERO,
 | 
						|
     $                         A( K, J+2 ), LDA)
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         J = J + 1
 | 
						|
         GO TO 10
 | 
						|
 20      CONTINUE
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        .....................................................
 | 
						|
*        Factorize A as L*D*L**T using the lower triangle of A
 | 
						|
*        .....................................................
 | 
						|
*
 | 
						|
 30      CONTINUE
 | 
						|
         IF( J.GT.MIN( M, NB ) )
 | 
						|
     $      GO TO 40
 | 
						|
*
 | 
						|
*        K is the column to be factorized
 | 
						|
*         when being called from CHETRF_AA,
 | 
						|
*         > for the first block column, J1 is 1, hence J1+J-1 is J,
 | 
						|
*         > for the rest of the columns, J1 is 2, and J1+J-1 is J+1,
 | 
						|
*
 | 
						|
         K = J1+J-1
 | 
						|
         IF( J.EQ.M ) THEN
 | 
						|
*
 | 
						|
*            Only need to compute T(J, J)
 | 
						|
*
 | 
						|
             MJ = 1
 | 
						|
         ELSE
 | 
						|
             MJ = M-J+1
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        H(J:N, J) := A(J:N, J) - H(J:N, 1:(J-1)) * L(J, J1:(J-1))^T,
 | 
						|
*         where H(J:N, J) has been initialized to be A(J:N, J)
 | 
						|
*
 | 
						|
         IF( K.GT.2 ) THEN
 | 
						|
*
 | 
						|
*        K is the column to be factorized
 | 
						|
*         > for the first block column, K is J, skipping the first two
 | 
						|
*           columns
 | 
						|
*         > for the rest of the columns, K is J+1, skipping only the
 | 
						|
*           first column
 | 
						|
*
 | 
						|
            CALL CLACGV( J-K1, A( J, 1 ), LDA )
 | 
						|
            CALL CGEMV( 'No transpose', MJ, J-K1,
 | 
						|
     $                 -ONE, H( J, K1 ), LDH,
 | 
						|
     $                       A( J, 1 ), LDA,
 | 
						|
     $                  ONE, H( J, J ), 1 )
 | 
						|
            CALL CLACGV( J-K1, A( J, 1 ), LDA )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Copy H(J:N, J) into WORK
 | 
						|
*
 | 
						|
         CALL CCOPY( MJ, H( J, J ), 1, WORK( 1 ), 1 )
 | 
						|
*
 | 
						|
         IF( J.GT.K1 ) THEN
 | 
						|
*
 | 
						|
*           Compute WORK := WORK - L(J:N, J-1) * T(J-1,J),
 | 
						|
*            where A(J-1, J) = T(J-1, J) and A(J, J-2) = L(J, J-1)
 | 
						|
*
 | 
						|
            ALPHA = -CONJG( A( J, K-1 ) )
 | 
						|
            CALL CAXPY( MJ, ALPHA, A( J, K-2 ), 1, WORK( 1 ), 1 )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Set A(J, J) = T(J, J)
 | 
						|
*
 | 
						|
         A( J, K ) = REAL( WORK( 1 ) )
 | 
						|
*
 | 
						|
         IF( J.LT.M ) THEN
 | 
						|
*
 | 
						|
*           Compute WORK(2:N) = T(J, J) L((J+1):N, J)
 | 
						|
*            where A(J, J) = T(J, J) and A((J+1):N, J-1) = L((J+1):N, J)
 | 
						|
*
 | 
						|
            IF( K.GT.1 ) THEN
 | 
						|
               ALPHA = -A( J, K )
 | 
						|
               CALL CAXPY( M-J, ALPHA, A( J+1, K-1 ), 1,
 | 
						|
     $                                 WORK( 2 ), 1 )
 | 
						|
            ENDIF
 | 
						|
*
 | 
						|
*           Find max(|WORK(2:n)|)
 | 
						|
*
 | 
						|
            I2 = ICAMAX( M-J, WORK( 2 ), 1 ) + 1
 | 
						|
            PIV = WORK( I2 )
 | 
						|
*
 | 
						|
*           Apply hermitian pivot
 | 
						|
*
 | 
						|
            IF( (I2.NE.2) .AND. (PIV.NE.0) ) THEN
 | 
						|
*
 | 
						|
*              Swap WORK(I1) and WORK(I2)
 | 
						|
*
 | 
						|
               I1 = 2
 | 
						|
               WORK( I2 ) = WORK( I1 )
 | 
						|
               WORK( I1 ) = PIV
 | 
						|
*
 | 
						|
*              Swap A(I1+1:N, I1) with A(I2, I1+1:N)
 | 
						|
*
 | 
						|
               I1 = I1+J-1
 | 
						|
               I2 = I2+J-1
 | 
						|
               CALL CSWAP( I2-I1-1, A( I1+1, J1+I1-1 ), 1,
 | 
						|
     $                              A( I2, J1+I1 ), LDA )
 | 
						|
               CALL CLACGV( I2-I1, A( I1+1, J1+I1-1 ), 1 )
 | 
						|
               CALL CLACGV( I2-I1-1, A( I2, J1+I1 ), LDA )
 | 
						|
*
 | 
						|
*              Swap A(I2+1:N, I1) with A(I2+1:N, I2)
 | 
						|
*
 | 
						|
               IF( I2.LT.M )
 | 
						|
     $            CALL CSWAP( M-I2, A( I2+1, J1+I1-1 ), 1,
 | 
						|
     $                              A( I2+1, J1+I2-1 ), 1 )
 | 
						|
*
 | 
						|
*              Swap A(I1, I1) with A(I2, I2)
 | 
						|
*
 | 
						|
               PIV = A( I1, J1+I1-1 )
 | 
						|
               A( I1, J1+I1-1 ) = A( I2, J1+I2-1 )
 | 
						|
               A( I2, J1+I2-1 ) = PIV
 | 
						|
*
 | 
						|
*              Swap H(I1, I1:J1) with H(I2, I2:J1)
 | 
						|
*
 | 
						|
               CALL CSWAP( I1-1, H( I1, 1 ), LDH, H( I2, 1 ), LDH )
 | 
						|
               IPIV( I1 ) = I2
 | 
						|
*
 | 
						|
               IF( I1.GT.(K1-1) ) THEN
 | 
						|
*
 | 
						|
*                 Swap L(1:I1-1, I1) with L(1:I1-1, I2),
 | 
						|
*                  skipping the first column
 | 
						|
*
 | 
						|
                  CALL CSWAP( I1-K1+1, A( I1, 1 ), LDA,
 | 
						|
     $                                 A( I2, 1 ), LDA )
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
               IPIV( J+1 ) = J+1
 | 
						|
            ENDIF
 | 
						|
*
 | 
						|
*           Set A(J+1, J) = T(J+1, J)
 | 
						|
*
 | 
						|
            A( J+1, K ) = WORK( 2 )
 | 
						|
*
 | 
						|
            IF( J.LT.NB ) THEN
 | 
						|
*
 | 
						|
*              Copy A(J+1:N, J+1) into H(J+1:N, J),
 | 
						|
*
 | 
						|
               CALL CCOPY( M-J, A( J+1, K+1 ), 1,
 | 
						|
     $                          H( J+1, J+1 ), 1 )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Compute L(J+2, J+1) = WORK( 3:N ) / T(J, J+1),
 | 
						|
*            where A(J, J+1) = T(J, J+1) and A(J+2:N, J) = L(J+2:N, J+1)
 | 
						|
*
 | 
						|
            IF( J.LT.(M-1) ) THEN
 | 
						|
               IF( A( J+1, K ).NE.ZERO ) THEN
 | 
						|
                  ALPHA = ONE / A( J+1, K )
 | 
						|
                  CALL CCOPY( M-J-1, WORK( 3 ), 1, A( J+2, K ), 1 )
 | 
						|
                  CALL CSCAL( M-J-1, ALPHA, A( J+2, K ), 1 )
 | 
						|
               ELSE
 | 
						|
                  CALL CLASET( 'Full', M-J-1, 1, ZERO, ZERO,
 | 
						|
     $                         A( J+2, K ), LDA )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         J = J + 1
 | 
						|
         GO TO 30
 | 
						|
 40      CONTINUE
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CLAHEF_AA
 | 
						|
*
 | 
						|
      END
 |