520 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			520 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZTGSNA
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZTGSNA + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgsna.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgsna.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgsna.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
 | |
| *                          LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
 | |
| *                          IWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          HOWMNY, JOB
 | |
| *       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            SELECT( * )
 | |
| *       INTEGER            IWORK( * )
 | |
| *       DOUBLE PRECISION   DIF( * ), S( * )
 | |
| *       COMPLEX*16         A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
 | |
| *      $                   VR( LDVR, * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZTGSNA estimates reciprocal condition numbers for specified
 | |
| *> eigenvalues and/or eigenvectors of a matrix pair (A, B).
 | |
| *>
 | |
| *> (A, B) must be in generalized Schur canonical form, that is, A and
 | |
| *> B are both upper triangular.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOB
 | |
| *> \verbatim
 | |
| *>          JOB is CHARACTER*1
 | |
| *>          Specifies whether condition numbers are required for
 | |
| *>          eigenvalues (S) or eigenvectors (DIF):
 | |
| *>          = 'E': for eigenvalues only (S);
 | |
| *>          = 'V': for eigenvectors only (DIF);
 | |
| *>          = 'B': for both eigenvalues and eigenvectors (S and DIF).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] HOWMNY
 | |
| *> \verbatim
 | |
| *>          HOWMNY is CHARACTER*1
 | |
| *>          = 'A': compute condition numbers for all eigenpairs;
 | |
| *>          = 'S': compute condition numbers for selected eigenpairs
 | |
| *>                 specified by the array SELECT.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SELECT
 | |
| *> \verbatim
 | |
| *>          SELECT is LOGICAL array, dimension (N)
 | |
| *>          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
 | |
| *>          condition numbers are required. To select condition numbers
 | |
| *>          for the corresponding j-th eigenvalue and/or eigenvector,
 | |
| *>          SELECT(j) must be set to .TRUE..
 | |
| *>          If HOWMNY = 'A', SELECT is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the square matrix pair (A, B). N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          The upper triangular matrix A in the pair (A,B).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX*16 array, dimension (LDB,N)
 | |
| *>          The upper triangular matrix B in the pair (A, B).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VL
 | |
| *> \verbatim
 | |
| *>          VL is COMPLEX*16 array, dimension (LDVL,M)
 | |
| *>          IF JOB = 'E' or 'B', VL must contain left eigenvectors of
 | |
| *>          (A, B), corresponding to the eigenpairs specified by HOWMNY
 | |
| *>          and SELECT.  The eigenvectors must be stored in consecutive
 | |
| *>          columns of VL, as returned by ZTGEVC.
 | |
| *>          If JOB = 'V', VL is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVL
 | |
| *> \verbatim
 | |
| *>          LDVL is INTEGER
 | |
| *>          The leading dimension of the array VL. LDVL >= 1; and
 | |
| *>          If JOB = 'E' or 'B', LDVL >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VR
 | |
| *> \verbatim
 | |
| *>          VR is COMPLEX*16 array, dimension (LDVR,M)
 | |
| *>          IF JOB = 'E' or 'B', VR must contain right eigenvectors of
 | |
| *>          (A, B), corresponding to the eigenpairs specified by HOWMNY
 | |
| *>          and SELECT.  The eigenvectors must be stored in consecutive
 | |
| *>          columns of VR, as returned by ZTGEVC.
 | |
| *>          If JOB = 'V', VR is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVR
 | |
| *> \verbatim
 | |
| *>          LDVR is INTEGER
 | |
| *>          The leading dimension of the array VR. LDVR >= 1;
 | |
| *>          If JOB = 'E' or 'B', LDVR >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] S
 | |
| *> \verbatim
 | |
| *>          S is DOUBLE PRECISION array, dimension (MM)
 | |
| *>          If JOB = 'E' or 'B', the reciprocal condition numbers of the
 | |
| *>          selected eigenvalues, stored in consecutive elements of the
 | |
| *>          array.
 | |
| *>          If JOB = 'V', S is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] DIF
 | |
| *> \verbatim
 | |
| *>          DIF is DOUBLE PRECISION array, dimension (MM)
 | |
| *>          If JOB = 'V' or 'B', the estimated reciprocal condition
 | |
| *>          numbers of the selected eigenvectors, stored in consecutive
 | |
| *>          elements of the array.
 | |
| *>          If the eigenvalues cannot be reordered to compute DIF(j),
 | |
| *>          DIF(j) is set to 0; this can only occur when the true value
 | |
| *>          would be very small anyway.
 | |
| *>          For each eigenvalue/vector specified by SELECT, DIF stores
 | |
| *>          a Frobenius norm-based estimate of Difl.
 | |
| *>          If JOB = 'E', DIF is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] MM
 | |
| *> \verbatim
 | |
| *>          MM is INTEGER
 | |
| *>          The number of elements in the arrays S and DIF. MM >= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of elements of the arrays S and DIF used to store
 | |
| *>          the specified condition numbers; for each selected eigenvalue
 | |
| *>          one element is used. If HOWMNY = 'A', M is set to N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK. LWORK >= max(1,N).
 | |
| *>          If JOB = 'V' or 'B', LWORK >= max(1,2*N*N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (N+2)
 | |
| *>          If JOB = 'E', IWORK is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: Successful exit
 | |
| *>          < 0: If INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16OTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The reciprocal of the condition number of the i-th generalized
 | |
| *>  eigenvalue w = (a, b) is defined as
 | |
| *>
 | |
| *>          S(I) = (|v**HAu|**2 + |v**HBu|**2)**(1/2) / (norm(u)*norm(v))
 | |
| *>
 | |
| *>  where u and v are the right and left eigenvectors of (A, B)
 | |
| *>  corresponding to w; |z| denotes the absolute value of the complex
 | |
| *>  number, and norm(u) denotes the 2-norm of the vector u. The pair
 | |
| *>  (a, b) corresponds to an eigenvalue w = a/b (= v**HAu/v**HBu) of the
 | |
| *>  matrix pair (A, B). If both a and b equal zero, then (A,B) is
 | |
| *>  singular and S(I) = -1 is returned.
 | |
| *>
 | |
| *>  An approximate error bound on the chordal distance between the i-th
 | |
| *>  computed generalized eigenvalue w and the corresponding exact
 | |
| *>  eigenvalue lambda is
 | |
| *>
 | |
| *>          chord(w, lambda) <=   EPS * norm(A, B) / S(I),
 | |
| *>
 | |
| *>  where EPS is the machine precision.
 | |
| *>
 | |
| *>  The reciprocal of the condition number of the right eigenvector u
 | |
| *>  and left eigenvector v corresponding to the generalized eigenvalue w
 | |
| *>  is defined as follows. Suppose
 | |
| *>
 | |
| *>                   (A, B) = ( a   *  ) ( b  *  )  1
 | |
| *>                            ( 0  A22 ),( 0 B22 )  n-1
 | |
| *>                              1  n-1     1 n-1
 | |
| *>
 | |
| *>  Then the reciprocal condition number DIF(I) is
 | |
| *>
 | |
| *>          Difl[(a, b), (A22, B22)]  = sigma-min( Zl )
 | |
| *>
 | |
| *>  where sigma-min(Zl) denotes the smallest singular value of
 | |
| *>
 | |
| *>         Zl = [ kron(a, In-1) -kron(1, A22) ]
 | |
| *>              [ kron(b, In-1) -kron(1, B22) ].
 | |
| *>
 | |
| *>  Here In-1 is the identity matrix of size n-1 and X**H is the conjugate
 | |
| *>  transpose of X. kron(X, Y) is the Kronecker product between the
 | |
| *>  matrices X and Y.
 | |
| *>
 | |
| *>  We approximate the smallest singular value of Zl with an upper
 | |
| *>  bound. This is done by ZLATDF.
 | |
| *>
 | |
| *>  An approximate error bound for a computed eigenvector VL(i) or
 | |
| *>  VR(i) is given by
 | |
| *>
 | |
| *>                      EPS * norm(A, B) / DIF(i).
 | |
| *>
 | |
| *>  See ref. [2-3] for more details and further references.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 | |
| *>     Umea University, S-901 87 Umea, Sweden.
 | |
| *
 | |
| *> \par References:
 | |
| *  ================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
 | |
| *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
 | |
| *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
 | |
| *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
 | |
| *>
 | |
| *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
 | |
| *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
 | |
| *>      Estimation: Theory, Algorithms and Software, Report
 | |
| *>      UMINF - 94.04, Department of Computing Science, Umea University,
 | |
| *>      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
 | |
| *>      To appear in Numerical Algorithms, 1996.
 | |
| *>
 | |
| *>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
 | |
| *>      for Solving the Generalized Sylvester Equation and Estimating the
 | |
| *>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
 | |
| *>      Department of Computing Science, Umea University, S-901 87 Umea,
 | |
| *>      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
 | |
| *>      Note 75.
 | |
| *>      To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
 | |
|      $                   LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
 | |
|      $                   IWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          HOWMNY, JOB
 | |
|       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            SELECT( * )
 | |
|       INTEGER            IWORK( * )
 | |
|       DOUBLE PRECISION   DIF( * ), S( * )
 | |
|       COMPLEX*16         A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
 | |
|      $                   VR( LDVR, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       INTEGER            IDIFJB
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, IDIFJB = 3 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, SOMCON, WANTBH, WANTDF, WANTS
 | |
|       INTEGER            I, IERR, IFST, ILST, K, KS, LWMIN, N1, N2
 | |
|       DOUBLE PRECISION   BIGNUM, COND, EPS, LNRM, RNRM, SCALE, SMLNUM
 | |
|       COMPLEX*16         YHAX, YHBX
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       COMPLEX*16         DUMMY( 1 ), DUMMY1( 1 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION   DLAMCH, DLAPY2, DZNRM2
 | |
|       COMPLEX*16         ZDOTC
 | |
|       EXTERNAL           LSAME, DLAMCH, DLAPY2, DZNRM2, ZDOTC
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLABAD, XERBLA, ZGEMV, ZLACPY, ZTGEXC, ZTGSYL
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DCMPLX, MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode and test the input parameters
 | |
| *
 | |
|       WANTBH = LSAME( JOB, 'B' )
 | |
|       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
 | |
|       WANTDF = LSAME( JOB, 'V' ) .OR. WANTBH
 | |
| *
 | |
|       SOMCON = LSAME( HOWMNY, 'S' )
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
| *
 | |
|       IF( .NOT.WANTS .AND. .NOT.WANTDF ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( WANTS .AND. LDVL.LT.N ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( WANTS .AND. LDVR.LT.N ) THEN
 | |
|          INFO = -12
 | |
|       ELSE
 | |
| *
 | |
| *        Set M to the number of eigenpairs for which condition numbers
 | |
| *        are required, and test MM.
 | |
| *
 | |
|          IF( SOMCON ) THEN
 | |
|             M = 0
 | |
|             DO 10 K = 1, N
 | |
|                IF( SELECT( K ) )
 | |
|      $            M = M + 1
 | |
|    10       CONTINUE
 | |
|          ELSE
 | |
|             M = N
 | |
|          END IF
 | |
| *
 | |
|          IF( N.EQ.0 ) THEN
 | |
|             LWMIN = 1
 | |
|          ELSE IF( LSAME( JOB, 'V' ) .OR. LSAME( JOB, 'B' ) ) THEN
 | |
|             LWMIN = 2*N*N
 | |
|          ELSE
 | |
|             LWMIN = N
 | |
|          END IF
 | |
|          WORK( 1 ) = LWMIN
 | |
| *
 | |
|          IF( MM.LT.M ) THEN
 | |
|             INFO = -15
 | |
|          ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -18
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZTGSNA', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Get machine constants
 | |
| *
 | |
|       EPS = DLAMCH( 'P' )
 | |
|       SMLNUM = DLAMCH( 'S' ) / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL DLABAD( SMLNUM, BIGNUM )
 | |
|       KS = 0
 | |
|       DO 20 K = 1, N
 | |
| *
 | |
| *        Determine whether condition numbers are required for the k-th
 | |
| *        eigenpair.
 | |
| *
 | |
|          IF( SOMCON ) THEN
 | |
|             IF( .NOT.SELECT( K ) )
 | |
|      $         GO TO 20
 | |
|          END IF
 | |
| *
 | |
|          KS = KS + 1
 | |
| *
 | |
|          IF( WANTS ) THEN
 | |
| *
 | |
| *           Compute the reciprocal condition number of the k-th
 | |
| *           eigenvalue.
 | |
| *
 | |
|             RNRM = DZNRM2( N, VR( 1, KS ), 1 )
 | |
|             LNRM = DZNRM2( N, VL( 1, KS ), 1 )
 | |
|             CALL ZGEMV( 'N', N, N, DCMPLX( ONE, ZERO ), A, LDA,
 | |
|      $                  VR( 1, KS ), 1, DCMPLX( ZERO, ZERO ), WORK, 1 )
 | |
|             YHAX = ZDOTC( N, WORK, 1, VL( 1, KS ), 1 )
 | |
|             CALL ZGEMV( 'N', N, N, DCMPLX( ONE, ZERO ), B, LDB,
 | |
|      $                  VR( 1, KS ), 1, DCMPLX( ZERO, ZERO ), WORK, 1 )
 | |
|             YHBX = ZDOTC( N, WORK, 1, VL( 1, KS ), 1 )
 | |
|             COND = DLAPY2( ABS( YHAX ), ABS( YHBX ) )
 | |
|             IF( COND.EQ.ZERO ) THEN
 | |
|                S( KS ) = -ONE
 | |
|             ELSE
 | |
|                S( KS ) = COND / ( RNRM*LNRM )
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|          IF( WANTDF ) THEN
 | |
|             IF( N.EQ.1 ) THEN
 | |
|                DIF( KS ) = DLAPY2( ABS( A( 1, 1 ) ), ABS( B( 1, 1 ) ) )
 | |
|             ELSE
 | |
| *
 | |
| *              Estimate the reciprocal condition number of the k-th
 | |
| *              eigenvectors.
 | |
| *
 | |
| *              Copy the matrix (A, B) to the array WORK and move the
 | |
| *              (k,k)th pair to the (1,1) position.
 | |
| *
 | |
|                CALL ZLACPY( 'Full', N, N, A, LDA, WORK, N )
 | |
|                CALL ZLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N )
 | |
|                IFST = K
 | |
|                ILST = 1
 | |
| *
 | |
|                CALL ZTGEXC( .FALSE., .FALSE., N, WORK, N, WORK( N*N+1 ),
 | |
|      $                      N, DUMMY, 1, DUMMY1, 1, IFST, ILST, IERR )
 | |
| *
 | |
|                IF( IERR.GT.0 ) THEN
 | |
| *
 | |
| *                 Ill-conditioned problem - swap rejected.
 | |
| *
 | |
|                   DIF( KS ) = ZERO
 | |
|                ELSE
 | |
| *
 | |
| *                 Reordering successful, solve generalized Sylvester
 | |
| *                 equation for R and L,
 | |
| *                            A22 * R - L * A11 = A12
 | |
| *                            B22 * R - L * B11 = B12,
 | |
| *                 and compute estimate of Difl[(A11,B11), (A22, B22)].
 | |
| *
 | |
|                   N1 = 1
 | |
|                   N2 = N - N1
 | |
|                   I = N*N + 1
 | |
|                   CALL ZTGSYL( 'N', IDIFJB, N2, N1, WORK( N*N1+N1+1 ),
 | |
|      $                         N, WORK, N, WORK( N1+1 ), N,
 | |
|      $                         WORK( N*N1+N1+I ), N, WORK( I ), N,
 | |
|      $                         WORK( N1+I ), N, SCALE, DIF( KS ), DUMMY,
 | |
|      $                         1, IWORK, IERR )
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|    20 CONTINUE
 | |
|       WORK( 1 ) = LWMIN
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZTGSNA
 | |
| *
 | |
|       END
 |