372 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			372 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
      SUBROUTINE CHER2KF( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB,
 | 
						|
     $                   BETA, C, LDC )
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER*1        UPLO, TRANS
 | 
						|
      INTEGER            N, K, LDA, LDB, LDC
 | 
						|
      REAL               BETA
 | 
						|
      COMPLEX            ALPHA
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            A( LDA, * ), B( LDB, * ), C( LDC, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  Purpose
 | 
						|
*  =======
 | 
						|
*
 | 
						|
*  CHER2K  performs one of the hermitian rank 2k operations
 | 
						|
*
 | 
						|
*     C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + beta*C,
 | 
						|
*
 | 
						|
*  or
 | 
						|
*
 | 
						|
*     C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + beta*C,
 | 
						|
*
 | 
						|
*  where  alpha and beta  are scalars with  beta  real,  C is an  n by n
 | 
						|
*  hermitian matrix and  A and B  are  n by k matrices in the first case
 | 
						|
*  and  k by n  matrices in the second case.
 | 
						|
*
 | 
						|
*  Parameters
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*  UPLO   - CHARACTER*1.
 | 
						|
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
 | 
						|
*           triangular  part  of the  array  C  is to be  referenced  as
 | 
						|
*           follows:
 | 
						|
*
 | 
						|
*              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
 | 
						|
*                                  is to be referenced.
 | 
						|
*
 | 
						|
*              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
 | 
						|
*                                  is to be referenced.
 | 
						|
*
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  TRANS  - CHARACTER*1.
 | 
						|
*           On entry,  TRANS  specifies the operation to be performed as
 | 
						|
*           follows:
 | 
						|
*
 | 
						|
*              TRANS = 'N' or 'n'    C := alpha*A*conjg( B' )          +
 | 
						|
*                                         conjg( alpha )*B*conjg( A' ) +
 | 
						|
*                                         beta*C.
 | 
						|
*
 | 
						|
*              TRANS = 'C' or 'c'    C := alpha*conjg( A' )*B          +
 | 
						|
*                                         conjg( alpha )*conjg( B' )*A +
 | 
						|
*                                         beta*C.
 | 
						|
*
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  N      - INTEGER.
 | 
						|
*           On entry,  N specifies the order of the matrix C.  N must be
 | 
						|
*           at least zero.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  K      - INTEGER.
 | 
						|
*           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
 | 
						|
*           of  columns  of the  matrices  A and B,  and on  entry  with
 | 
						|
*           TRANS = 'C' or 'c',  K  specifies  the number of rows of the
 | 
						|
*           matrices  A and B.  K must be at least zero.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  ALPHA  - COMPLEX         .
 | 
						|
*           On entry, ALPHA specifies the scalar alpha.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  A      - COMPLEX          array of DIMENSION ( LDA, ka ), where ka is
 | 
						|
*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
 | 
						|
*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
 | 
						|
*           part of the array  A  must contain the matrix  A,  otherwise
 | 
						|
*           the leading  k by n  part of the array  A  must contain  the
 | 
						|
*           matrix A.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  LDA    - INTEGER.
 | 
						|
*           On entry, LDA specifies the first dimension of A as declared
 | 
						|
*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
 | 
						|
*           then  LDA must be at least  max( 1, n ), otherwise  LDA must
 | 
						|
*           be at least  max( 1, k ).
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  B      - COMPLEX          array of DIMENSION ( LDB, kb ), where kb is
 | 
						|
*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
 | 
						|
*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
 | 
						|
*           part of the array  B  must contain the matrix  B,  otherwise
 | 
						|
*           the leading  k by n  part of the array  B  must contain  the
 | 
						|
*           matrix B.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  LDB    - INTEGER.
 | 
						|
*           On entry, LDB specifies the first dimension of B as declared
 | 
						|
*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
 | 
						|
*           then  LDB must be at least  max( 1, n ), otherwise  LDB must
 | 
						|
*           be at least  max( 1, k ).
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  BETA   - REAL            .
 | 
						|
*           On entry, BETA specifies the scalar beta.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  C      - COMPLEX          array of DIMENSION ( LDC, n ).
 | 
						|
*           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
 | 
						|
*           upper triangular part of the array C must contain the upper
 | 
						|
*           triangular part  of the  hermitian matrix  and the strictly
 | 
						|
*           lower triangular part of C is not referenced.  On exit, the
 | 
						|
*           upper triangular part of the array  C is overwritten by the
 | 
						|
*           upper triangular part of the updated matrix.
 | 
						|
*           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
 | 
						|
*           lower triangular part of the array C must contain the lower
 | 
						|
*           triangular part  of the  hermitian matrix  and the strictly
 | 
						|
*           upper triangular part of C is not referenced.  On exit, the
 | 
						|
*           lower triangular part of the array  C is overwritten by the
 | 
						|
*           lower triangular part of the updated matrix.
 | 
						|
*           Note that the imaginary parts of the diagonal elements need
 | 
						|
*           not be set,  they are assumed to be zero,  and on exit they
 | 
						|
*           are set to zero.
 | 
						|
*
 | 
						|
*  LDC    - INTEGER.
 | 
						|
*           On entry, LDC specifies the first dimension of C as declared
 | 
						|
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
 | 
						|
*           max( 1, n ).
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*
 | 
						|
*  Level 3 Blas routine.
 | 
						|
*
 | 
						|
*  -- Written on 8-February-1989.
 | 
						|
*     Jack Dongarra, Argonne National Laboratory.
 | 
						|
*     Iain Duff, AERE Harwell.
 | 
						|
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
 | 
						|
*     Sven Hammarling, Numerical Algorithms Group Ltd.
 | 
						|
*
 | 
						|
*  -- Modified 8-Nov-93 to set C(J,J) to REAL( C(J,J) ) when BETA = 1.
 | 
						|
*     Ed Anderson, Cray Research Inc.
 | 
						|
*
 | 
						|
*
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          CONJG, MAX, REAL
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            I, INFO, J, L, NROWA
 | 
						|
      COMPLEX            TEMP1, TEMP2
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE
 | 
						|
      PARAMETER        ( ONE  = 1.0E+0 )
 | 
						|
      COMPLEX            ZERO
 | 
						|
      PARAMETER        ( ZERO = ( 0.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      IF( LSAME( TRANS, 'N' ) )THEN
 | 
						|
         NROWA = N
 | 
						|
      ELSE
 | 
						|
         NROWA = K
 | 
						|
      END IF
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF(      ( .NOT.UPPER               ).AND.
 | 
						|
     $         ( .NOT.LSAME( UPLO , 'L' ) )      )THEN
 | 
						|
         INFO = 1
 | 
						|
      ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
 | 
						|
     $         ( .NOT.LSAME( TRANS, 'C' ) )      )THEN
 | 
						|
         INFO = 2
 | 
						|
      ELSE IF( N  .LT.0               )THEN
 | 
						|
         INFO = 3
 | 
						|
      ELSE IF( K  .LT.0               )THEN
 | 
						|
         INFO = 4
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
 | 
						|
         INFO = 7
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, NROWA ) )THEN
 | 
						|
         INFO = 9
 | 
						|
      ELSE IF( LDC.LT.MAX( 1, N     ) )THEN
 | 
						|
         INFO = 12
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 )THEN
 | 
						|
         CALL XERBLA( 'CHER2K', INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( ( N.EQ.0 ).OR.
 | 
						|
     $    ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     And when  alpha.eq.zero.
 | 
						|
*
 | 
						|
      IF( ALPHA.EQ.ZERO )THEN
 | 
						|
         IF( UPPER )THEN
 | 
						|
            IF( BETA.EQ.REAL( ZERO ) )THEN
 | 
						|
               DO 20, J = 1, N
 | 
						|
                  DO 10, I = 1, J
 | 
						|
                     C( I, J ) = ZERO
 | 
						|
   10             CONTINUE
 | 
						|
   20          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 40, J = 1, N
 | 
						|
                  DO 30, I = 1, J - 1
 | 
						|
                     C( I, J ) = BETA*C( I, J )
 | 
						|
   30             CONTINUE
 | 
						|
                  C( J, J ) = BETA*REAL( C( J, J ) )
 | 
						|
   40          CONTINUE
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            IF( BETA.EQ.REAL( ZERO ) )THEN
 | 
						|
               DO 60, J = 1, N
 | 
						|
                  DO 50, I = J, N
 | 
						|
                     C( I, J ) = ZERO
 | 
						|
   50             CONTINUE
 | 
						|
   60          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 80, J = 1, N
 | 
						|
                  C( J, J ) = BETA*REAL( C( J, J ) )
 | 
						|
                  DO 70, I = J + 1, N
 | 
						|
                     C( I, J ) = BETA*C( I, J )
 | 
						|
   70             CONTINUE
 | 
						|
   80          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Start the operations.
 | 
						|
*
 | 
						|
      IF( LSAME( TRANS, 'N' ) )THEN
 | 
						|
*
 | 
						|
*        Form  C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) +
 | 
						|
*                   C.
 | 
						|
*
 | 
						|
         IF( UPPER )THEN
 | 
						|
            DO 130, J = 1, N
 | 
						|
               IF( BETA.EQ.REAL( ZERO ) )THEN
 | 
						|
                  DO 90, I = 1, J
 | 
						|
                     C( I, J ) = ZERO
 | 
						|
   90             CONTINUE
 | 
						|
               ELSE IF( BETA.NE.ONE )THEN
 | 
						|
                  DO 100, I = 1, J - 1
 | 
						|
                     C( I, J ) = BETA*C( I, J )
 | 
						|
  100             CONTINUE
 | 
						|
                  C( J, J ) = BETA*REAL( C( J, J ) )
 | 
						|
               ELSE
 | 
						|
                  C( J, J ) = REAL( C( J, J ) )
 | 
						|
               END IF
 | 
						|
               DO 120, L = 1, K
 | 
						|
                  IF( ( A( J, L ).NE.ZERO ).OR.
 | 
						|
     $                ( B( J, L ).NE.ZERO )     )THEN
 | 
						|
                     TEMP1 = ALPHA*CONJG( B( J, L ) )
 | 
						|
                     TEMP2 = CONJG( ALPHA*A( J, L ) )
 | 
						|
                     DO 110, I = 1, J - 1
 | 
						|
                        C( I, J ) = C( I, J ) + A( I, L )*TEMP1 +
 | 
						|
     $                                          B( I, L )*TEMP2
 | 
						|
  110                CONTINUE
 | 
						|
                     C( J, J ) = REAL( C( J, J ) )         +
 | 
						|
     $                           REAL( A( J, L )*TEMP1 +
 | 
						|
     $                                 B( J, L )*TEMP2   )
 | 
						|
                  END IF
 | 
						|
  120          CONTINUE
 | 
						|
  130       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 180, J = 1, N
 | 
						|
               IF( BETA.EQ.REAL( ZERO ) )THEN
 | 
						|
                  DO 140, I = J, N
 | 
						|
                     C( I, J ) = ZERO
 | 
						|
  140             CONTINUE
 | 
						|
               ELSE IF( BETA.NE.ONE )THEN
 | 
						|
                  DO 150, I = J + 1, N
 | 
						|
                     C( I, J ) = BETA*C( I, J )
 | 
						|
  150             CONTINUE
 | 
						|
                  C( J, J ) = BETA*REAL( C( J, J ) )
 | 
						|
               ELSE
 | 
						|
                  C( J, J ) = REAL( C( J, J ) )
 | 
						|
               END IF
 | 
						|
               DO 170, L = 1, K
 | 
						|
                  IF( ( A( J, L ).NE.ZERO ).OR.
 | 
						|
     $                ( B( J, L ).NE.ZERO )     )THEN
 | 
						|
                     TEMP1 = ALPHA*CONJG( B( J, L ) )
 | 
						|
                     TEMP2 = CONJG( ALPHA*A( J, L ) )
 | 
						|
                     DO 160, I = J + 1, N
 | 
						|
                        C( I, J ) = C( I, J ) + A( I, L )*TEMP1 +
 | 
						|
     $                                          B( I, L )*TEMP2
 | 
						|
  160                CONTINUE
 | 
						|
                     C( J, J ) = REAL( C( J, J ) )         +
 | 
						|
     $                           REAL( A( J, L )*TEMP1 +
 | 
						|
     $                                 B( J, L )*TEMP2   )
 | 
						|
                  END IF
 | 
						|
  170          CONTINUE
 | 
						|
  180       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Form  C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A +
 | 
						|
*                   C.
 | 
						|
*
 | 
						|
         IF( UPPER )THEN
 | 
						|
            DO 210, J = 1, N
 | 
						|
               DO 200, I = 1, J
 | 
						|
                  TEMP1 = ZERO
 | 
						|
                  TEMP2 = ZERO
 | 
						|
                  DO 190, L = 1, K
 | 
						|
                     TEMP1 = TEMP1 + CONJG( A( L, I ) )*B( L, J )
 | 
						|
                     TEMP2 = TEMP2 + CONJG( B( L, I ) )*A( L, J )
 | 
						|
  190             CONTINUE
 | 
						|
                  IF( I.EQ.J )THEN
 | 
						|
                     IF( BETA.EQ.REAL( ZERO ) )THEN
 | 
						|
                        C( J, J ) = REAL(        ALPHA  *TEMP1 +
 | 
						|
     $                                    CONJG( ALPHA )*TEMP2   )
 | 
						|
                     ELSE
 | 
						|
                        C( J, J ) = BETA*REAL( C( J, J ) )         +
 | 
						|
     $                              REAL(        ALPHA  *TEMP1 +
 | 
						|
     $                                    CONJG( ALPHA )*TEMP2   )
 | 
						|
                     END IF
 | 
						|
                  ELSE
 | 
						|
                     IF( BETA.EQ.REAL( ZERO ) )THEN
 | 
						|
                        C( I, J ) = ALPHA*TEMP1 + CONJG( ALPHA )*TEMP2
 | 
						|
                     ELSE
 | 
						|
                        C( I, J ) = BETA *C( I, J ) +
 | 
						|
     $                              ALPHA*TEMP1 + CONJG( ALPHA )*TEMP2
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
  200          CONTINUE
 | 
						|
  210       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 240, J = 1, N
 | 
						|
               DO 230, I = J, N
 | 
						|
                  TEMP1 = ZERO
 | 
						|
                  TEMP2 = ZERO
 | 
						|
                  DO 220, L = 1, K
 | 
						|
                     TEMP1 = TEMP1 + CONJG( A( L, I ) )*B( L, J )
 | 
						|
                     TEMP2 = TEMP2 + CONJG( B( L, I ) )*A( L, J )
 | 
						|
  220             CONTINUE
 | 
						|
                  IF( I.EQ.J )THEN
 | 
						|
                     IF( BETA.EQ.REAL( ZERO ) )THEN
 | 
						|
                        C( J, J ) = REAL(        ALPHA  *TEMP1 +
 | 
						|
     $                                    CONJG( ALPHA )*TEMP2   )
 | 
						|
                     ELSE
 | 
						|
                        C( J, J ) = BETA*REAL( C( J, J ) )         +
 | 
						|
     $                              REAL(        ALPHA  *TEMP1 +
 | 
						|
     $                                    CONJG( ALPHA )*TEMP2   )
 | 
						|
                     END IF
 | 
						|
                  ELSE
 | 
						|
                     IF( BETA.EQ.REAL( ZERO ) )THEN
 | 
						|
                        C( I, J ) = ALPHA*TEMP1 + CONJG( ALPHA )*TEMP2
 | 
						|
                     ELSE
 | 
						|
                        C( I, J ) = BETA *C( I, J ) +
 | 
						|
     $                              ALPHA*TEMP1 + CONJG( ALPHA )*TEMP2
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
  230          CONTINUE
 | 
						|
  240       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CHER2K.
 | 
						|
*
 | 
						|
      END
 |