908 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			908 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static complex c_b1 = {0.f,0.f};
 | 
						|
static complex c_b2 = {1.f,0.f};
 | 
						|
static integer c__3 = 3;
 | 
						|
static integer c__1 = 1;
 | 
						|
 | 
						|
/* > \brief \b CLAROR */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE CLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          INIT, SIDE */
 | 
						|
/*       INTEGER            INFO, LDA, M, N */
 | 
						|
/*       INTEGER            ISEED( 4 ) */
 | 
						|
/*       COMPLEX            A( LDA, * ), X( * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* >    CLAROR pre- or post-multiplies an M by N matrix A by a random */
 | 
						|
/* >    unitary matrix U, overwriting A. A may optionally be */
 | 
						|
/* >    initialized to the identity matrix before multiplying by U. */
 | 
						|
/* >    U is generated using the method of G.W. Stewart */
 | 
						|
/* >    ( SIAM J. Numer. Anal. 17, 1980, pp. 403-409 ). */
 | 
						|
/* >    (BLAS-2 version) */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] SIDE */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          SIDE is CHARACTER*1 */
 | 
						|
/* >           SIDE specifies whether A is multiplied on the left or right */
 | 
						|
/* >           by U. */
 | 
						|
/* >       SIDE = 'L'   Multiply A on the left (premultiply) by U */
 | 
						|
/* >       SIDE = 'R'   Multiply A on the right (postmultiply) by UC>       SIDE = 'C'   Multiply A on the lef
 | 
						|
t by U and the right by UC>       SIDE = 'T'   Multiply A on the left by U and the right by U' */
 | 
						|
/* >           Not modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] INIT */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INIT is CHARACTER*1 */
 | 
						|
/* >           INIT specifies whether or not A should be initialized to */
 | 
						|
/* >           the identity matrix. */
 | 
						|
/* >              INIT = 'I'   Initialize A to (a section of) the */
 | 
						|
/* >                           identity matrix before applying U. */
 | 
						|
/* >              INIT = 'N'   No initialization.  Apply U to the */
 | 
						|
/* >                           input matrix A. */
 | 
						|
/* > */
 | 
						|
/* >           INIT = 'I' may be used to generate square (i.e., unitary) */
 | 
						|
/* >           or rectangular orthogonal matrices (orthogonality being */
 | 
						|
/* >           in the sense of CDOTC): */
 | 
						|
/* > */
 | 
						|
/* >           For square matrices, M=N, and SIDE many be either 'L' or */
 | 
						|
/* >           'R'; the rows will be orthogonal to each other, as will the */
 | 
						|
/* >           columns. */
 | 
						|
/* >           For rectangular matrices where M < N, SIDE = 'R' will */
 | 
						|
/* >           produce a dense matrix whose rows will be orthogonal and */
 | 
						|
/* >           whose columns will not, while SIDE = 'L' will produce a */
 | 
						|
/* >           matrix whose rows will be orthogonal, and whose first M */
 | 
						|
/* >           columns will be orthogonal, the remaining columns being */
 | 
						|
/* >           zero. */
 | 
						|
/* >           For matrices where M > N, just use the previous */
 | 
						|
/* >           explanation, interchanging 'L' and 'R' and "rows" and */
 | 
						|
/* >           "columns". */
 | 
						|
/* > */
 | 
						|
/* >           Not modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] M */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          M is INTEGER */
 | 
						|
/* >           Number of rows of A. Not modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >           Number of columns of A. Not modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] A */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          A is COMPLEX array, dimension ( LDA, N ) */
 | 
						|
/* >           Input and output array. Overwritten by U A ( if SIDE = 'L' ) */
 | 
						|
/* >           or by A U ( if SIDE = 'R' ) */
 | 
						|
/* >           or by U A U* ( if SIDE = 'C') */
 | 
						|
/* >           or by U A U' ( if SIDE = 'T') on exit. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDA is INTEGER */
 | 
						|
/* >           Leading dimension of A. Must be at least MAX ( 1, M ). */
 | 
						|
/* >           Not modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] ISEED */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ISEED is INTEGER array, dimension ( 4 ) */
 | 
						|
/* >           On entry ISEED specifies the seed of the random number */
 | 
						|
/* >           generator. The array elements should be between 0 and 4095; */
 | 
						|
/* >           if not they will be reduced mod 4096.  Also, ISEED(4) must */
 | 
						|
/* >           be odd.  The random number generator uses a linear */
 | 
						|
/* >           congruential sequence limited to small integers, and so */
 | 
						|
/* >           should produce machine independent random numbers. The */
 | 
						|
/* >           values of ISEED are changed on exit, and can be used in the */
 | 
						|
/* >           next call to CLAROR to continue the same random number */
 | 
						|
/* >           sequence. */
 | 
						|
/* >           Modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] X */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          X is COMPLEX array, dimension ( 3*MAX( M, N ) ) */
 | 
						|
/* >           Workspace. Of length: */
 | 
						|
/* >               2*M + N if SIDE = 'L', */
 | 
						|
/* >               2*N + M if SIDE = 'R', */
 | 
						|
/* >               3*N     if SIDE = 'C' or 'T'. */
 | 
						|
/* >           Modified. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >           An error flag.  It is set to: */
 | 
						|
/* >            0  if no error. */
 | 
						|
/* >            1  if CLARND returned a bad random number (installation */
 | 
						|
/* >               problem) */
 | 
						|
/* >           -1  if SIDE is not L, R, C, or T. */
 | 
						|
/* >           -3  if M is negative. */
 | 
						|
/* >           -4  if N is negative or if SIDE is C or T and N is not equal */
 | 
						|
/* >               to M. */
 | 
						|
/* >           -6  if LDA is less than M. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup complex_matgen */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ int claror_(char *side, char *init, integer *m, integer *n, 
 | 
						|
	complex *a, integer *lda, integer *iseed, complex *x, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, i__1, i__2, i__3;
 | 
						|
    complex q__1, q__2;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer kbeg, jcol;
 | 
						|
    real xabs;
 | 
						|
    integer irow, j;
 | 
						|
    extern /* Subroutine */ int cgerc_(integer *, integer *, complex *, 
 | 
						|
	    complex *, integer *, complex *, integer *, complex *, integer *),
 | 
						|
	     cscal_(integer *, complex *, complex *, integer *);
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
 | 
						|
	    , complex *, integer *, complex *, integer *, complex *, complex *
 | 
						|
	    , integer *);
 | 
						|
    complex csign;
 | 
						|
    integer ixfrm, itype, nxfrm;
 | 
						|
    real xnorm;
 | 
						|
    extern real scnrm2_(integer *, complex *, integer *);
 | 
						|
    extern /* Subroutine */ int clacgv_(integer *, complex *, integer *);
 | 
						|
    //extern /* Complex */ VOID clarnd_(complex *, integer *, integer *);
 | 
						|
    extern complex clarnd_(integer *, integer *);
 | 
						|
    extern /* Subroutine */ int claset_(char *, integer *, integer *, complex 
 | 
						|
	    *, complex *, complex *, integer *), xerbla_(char *, 
 | 
						|
	    integer *);
 | 
						|
    real factor;
 | 
						|
    complex xnorms;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1 * 1;
 | 
						|
    a -= a_offset;
 | 
						|
    --iseed;
 | 
						|
    --x;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    if (*n == 0 || *m == 0) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    itype = 0;
 | 
						|
    if (lsame_(side, "L")) {
 | 
						|
	itype = 1;
 | 
						|
    } else if (lsame_(side, "R")) {
 | 
						|
	itype = 2;
 | 
						|
    } else if (lsame_(side, "C")) {
 | 
						|
	itype = 3;
 | 
						|
    } else if (lsame_(side, "T")) {
 | 
						|
	itype = 4;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Check for argument errors. */
 | 
						|
 | 
						|
    if (itype == 0) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*m < 0) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*n < 0 || itype == 3 && *n != *m) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (*lda < *m) {
 | 
						|
	*info = -6;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("CLAROR", &i__1);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (itype == 1) {
 | 
						|
	nxfrm = *m;
 | 
						|
    } else {
 | 
						|
	nxfrm = *n;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Initialize A to the identity matrix if desired */
 | 
						|
 | 
						|
    if (lsame_(init, "I")) {
 | 
						|
	claset_("Full", m, n, &c_b1, &c_b2, &a[a_offset], lda);
 | 
						|
    }
 | 
						|
 | 
						|
/*     If no rotation possible, still multiply by */
 | 
						|
/*     a random complex number from the circle |x| = 1 */
 | 
						|
 | 
						|
/*      2)      Compute Rotation by computing Householder */
 | 
						|
/*              Transformations H(2), H(3), ..., H(n).  Note that the */
 | 
						|
/*              order in which they are computed is irrelevant. */
 | 
						|
 | 
						|
    i__1 = nxfrm;
 | 
						|
    for (j = 1; j <= i__1; ++j) {
 | 
						|
	i__2 = j;
 | 
						|
	x[i__2].r = 0.f, x[i__2].i = 0.f;
 | 
						|
/* L40: */
 | 
						|
    }
 | 
						|
 | 
						|
    i__1 = nxfrm;
 | 
						|
    for (ixfrm = 2; ixfrm <= i__1; ++ixfrm) {
 | 
						|
	kbeg = nxfrm - ixfrm + 1;
 | 
						|
 | 
						|
/*        Generate independent normal( 0, 1 ) random numbers */
 | 
						|
 | 
						|
	i__2 = nxfrm;
 | 
						|
	for (j = kbeg; j <= i__2; ++j) {
 | 
						|
	    i__3 = j;
 | 
						|
	    //clarnd_(&q__1, &c__3, &iseed[1]);
 | 
						|
	    q__1=clarnd_(&c__3, &iseed[1]);
 | 
						|
	    x[i__3].r = q__1.r, x[i__3].i = q__1.i;
 | 
						|
/* L50: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        Generate a Householder transformation from the random vector X */
 | 
						|
 | 
						|
	xnorm = scnrm2_(&ixfrm, &x[kbeg], &c__1);
 | 
						|
	xabs = c_abs(&x[kbeg]);
 | 
						|
	if (xabs != 0.f) {
 | 
						|
	    i__2 = kbeg;
 | 
						|
	    q__1.r = x[i__2].r / xabs, q__1.i = x[i__2].i / xabs;
 | 
						|
	    csign.r = q__1.r, csign.i = q__1.i;
 | 
						|
	} else {
 | 
						|
	    csign.r = 1.f, csign.i = 0.f;
 | 
						|
	}
 | 
						|
	q__1.r = xnorm * csign.r, q__1.i = xnorm * csign.i;
 | 
						|
	xnorms.r = q__1.r, xnorms.i = q__1.i;
 | 
						|
	i__2 = nxfrm + kbeg;
 | 
						|
	q__1.r = -csign.r, q__1.i = -csign.i;
 | 
						|
	x[i__2].r = q__1.r, x[i__2].i = q__1.i;
 | 
						|
	factor = xnorm * (xnorm + xabs);
 | 
						|
	if (abs(factor) < 1e-20f) {
 | 
						|
	    *info = 1;
 | 
						|
	    i__2 = -(*info);
 | 
						|
	    xerbla_("CLAROR", &i__2);
 | 
						|
	    return 0;
 | 
						|
	} else {
 | 
						|
	    factor = 1.f / factor;
 | 
						|
	}
 | 
						|
	i__2 = kbeg;
 | 
						|
	i__3 = kbeg;
 | 
						|
	q__1.r = x[i__3].r + xnorms.r, q__1.i = x[i__3].i + xnorms.i;
 | 
						|
	x[i__2].r = q__1.r, x[i__2].i = q__1.i;
 | 
						|
 | 
						|
/*        Apply Householder transformation to A */
 | 
						|
 | 
						|
	if (itype == 1 || itype == 3 || itype == 4) {
 | 
						|
 | 
						|
/*           Apply H(k) on the left of A */
 | 
						|
 | 
						|
	    cgemv_("C", &ixfrm, n, &c_b2, &a[kbeg + a_dim1], lda, &x[kbeg], &
 | 
						|
		    c__1, &c_b1, &x[(nxfrm << 1) + 1], &c__1);
 | 
						|
	    q__2.r = factor, q__2.i = 0.f;
 | 
						|
	    q__1.r = -q__2.r, q__1.i = -q__2.i;
 | 
						|
	    cgerc_(&ixfrm, n, &q__1, &x[kbeg], &c__1, &x[(nxfrm << 1) + 1], &
 | 
						|
		    c__1, &a[kbeg + a_dim1], lda);
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	if (itype >= 2 && itype <= 4) {
 | 
						|
 | 
						|
/*           Apply H(k)* (or H(k)') on the right of A */
 | 
						|
 | 
						|
	    if (itype == 4) {
 | 
						|
		clacgv_(&ixfrm, &x[kbeg], &c__1);
 | 
						|
	    }
 | 
						|
 | 
						|
	    cgemv_("N", m, &ixfrm, &c_b2, &a[kbeg * a_dim1 + 1], lda, &x[kbeg]
 | 
						|
		    , &c__1, &c_b1, &x[(nxfrm << 1) + 1], &c__1);
 | 
						|
	    q__2.r = factor, q__2.i = 0.f;
 | 
						|
	    q__1.r = -q__2.r, q__1.i = -q__2.i;
 | 
						|
	    cgerc_(m, &ixfrm, &q__1, &x[(nxfrm << 1) + 1], &c__1, &x[kbeg], &
 | 
						|
		    c__1, &a[kbeg * a_dim1 + 1], lda);
 | 
						|
 | 
						|
	}
 | 
						|
/* L60: */
 | 
						|
    }
 | 
						|
 | 
						|
    //clarnd_(&q__1, &c__3, &iseed[1]);
 | 
						|
    q__1=clarnd_(&c__3, &iseed[1]);
 | 
						|
    x[1].r = q__1.r, x[1].i = q__1.i;
 | 
						|
    xabs = c_abs(&x[1]);
 | 
						|
    if (xabs != 0.f) {
 | 
						|
	q__1.r = x[1].r / xabs, q__1.i = x[1].i / xabs;
 | 
						|
	csign.r = q__1.r, csign.i = q__1.i;
 | 
						|
    } else {
 | 
						|
	csign.r = 1.f, csign.i = 0.f;
 | 
						|
    }
 | 
						|
    i__1 = nxfrm << 1;
 | 
						|
    x[i__1].r = csign.r, x[i__1].i = csign.i;
 | 
						|
 | 
						|
/*     Scale the matrix A by D. */
 | 
						|
 | 
						|
    if (itype == 1 || itype == 3 || itype == 4) {
 | 
						|
	i__1 = *m;
 | 
						|
	for (irow = 1; irow <= i__1; ++irow) {
 | 
						|
	    r_cnjg(&q__1, &x[nxfrm + irow]);
 | 
						|
	    cscal_(n, &q__1, &a[irow + a_dim1], lda);
 | 
						|
/* L70: */
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (itype == 2 || itype == 3) {
 | 
						|
	i__1 = *n;
 | 
						|
	for (jcol = 1; jcol <= i__1; ++jcol) {
 | 
						|
	    cscal_(m, &x[nxfrm + jcol], &a[jcol * a_dim1 + 1], &c__1);
 | 
						|
/* L80: */
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (itype == 4) {
 | 
						|
	i__1 = *n;
 | 
						|
	for (jcol = 1; jcol <= i__1; ++jcol) {
 | 
						|
	    r_cnjg(&q__1, &x[nxfrm + jcol]);
 | 
						|
	    cscal_(m, &q__1, &a[jcol * a_dim1 + 1], &c__1);
 | 
						|
/* L90: */
 | 
						|
	}
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of CLAROR */
 | 
						|
 | 
						|
} /* claror_ */
 | 
						|
 |