1060 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1060 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublecomplex c_b1 = {0.,0.};
 | |
| static doublecomplex c_b2 = {1.,0.};
 | |
| static integer c__1 = 1;
 | |
| static integer c__12 = 12;
 | |
| static integer c__2 = 2;
 | |
| static integer c__49 = 49;
 | |
| 
 | |
| /* > \brief \b ZHSEQR */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZHSEQR + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhseqr.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhseqr.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhseqr.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ, */
 | |
| /*                          WORK, LWORK, INFO ) */
 | |
| 
 | |
| /*       INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N */
 | |
| /*       CHARACTER          COMPZ, JOB */
 | |
| /*       COMPLEX*16         H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >    ZHSEQR computes the eigenvalues of a Hessenberg matrix H */
 | |
| /* >    and, optionally, the matrices T and Z from the Schur decomposition */
 | |
| /* >    H = Z T Z**H, where T is an upper triangular matrix (the */
 | |
| /* >    Schur form), and Z is the unitary matrix of Schur vectors. */
 | |
| /* > */
 | |
| /* >    Optionally Z may be postmultiplied into an input unitary */
 | |
| /* >    matrix Q so that this routine can give the Schur factorization */
 | |
| /* >    of a matrix A which has been reduced to the Hessenberg form H */
 | |
| /* >    by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*T*(QZ)**H. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] JOB */
 | |
| /* > \verbatim */
 | |
| /* >          JOB is CHARACTER*1 */
 | |
| /* >           = 'E':  compute eigenvalues only; */
 | |
| /* >           = 'S':  compute eigenvalues and the Schur form T. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] COMPZ */
 | |
| /* > \verbatim */
 | |
| /* >          COMPZ is CHARACTER*1 */
 | |
| /* >           = 'N':  no Schur vectors are computed; */
 | |
| /* >           = 'I':  Z is initialized to the unit matrix and the matrix Z */
 | |
| /* >                   of Schur vectors of H is returned; */
 | |
| /* >           = 'V':  Z must contain an unitary matrix Q on entry, and */
 | |
| /* >                   the product Q*Z is returned. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >           The order of the matrix H.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ILO */
 | |
| /* > \verbatim */
 | |
| /* >          ILO is INTEGER */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IHI */
 | |
| /* > \verbatim */
 | |
| /* >          IHI is INTEGER */
 | |
| /* > */
 | |
| /* >           It is assumed that H is already upper triangular in rows */
 | |
| /* >           and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */
 | |
| /* >           set by a previous call to ZGEBAL, and then passed to ZGEHRD */
 | |
| /* >           when the matrix output by ZGEBAL is reduced to Hessenberg */
 | |
| /* >           form. Otherwise ILO and IHI should be set to 1 and N */
 | |
| /* >           respectively.  If N > 0, then 1 <= ILO <= IHI <= N. */
 | |
| /* >           If N = 0, then ILO = 1 and IHI = 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] H */
 | |
| /* > \verbatim */
 | |
| /* >          H is COMPLEX*16 array, dimension (LDH,N) */
 | |
| /* >           On entry, the upper Hessenberg matrix H. */
 | |
| /* >           On exit, if INFO = 0 and JOB = 'S', H contains the upper */
 | |
| /* >           triangular matrix T from the Schur decomposition (the */
 | |
| /* >           Schur form). If INFO = 0 and JOB = 'E', the contents of */
 | |
| /* >           H are unspecified on exit.  (The output value of H when */
 | |
| /* >           INFO > 0 is given under the description of INFO below.) */
 | |
| /* > */
 | |
| /* >           Unlike earlier versions of ZHSEQR, this subroutine may */
 | |
| /* >           explicitly H(i,j) = 0 for i > j and j = 1, 2, ... ILO-1 */
 | |
| /* >           or j = IHI+1, IHI+2, ... N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDH */
 | |
| /* > \verbatim */
 | |
| /* >          LDH is INTEGER */
 | |
| /* >           The leading dimension of the array H. LDH >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] W */
 | |
| /* > \verbatim */
 | |
| /* >          W is COMPLEX*16 array, dimension (N) */
 | |
| /* >           The computed eigenvalues. If JOB = 'S', the eigenvalues are */
 | |
| /* >           stored in the same order as on the diagonal of the Schur */
 | |
| /* >           form returned in H, with W(i) = H(i,i). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is COMPLEX*16 array, dimension (LDZ,N) */
 | |
| /* >           If COMPZ = 'N', Z is not referenced. */
 | |
| /* >           If COMPZ = 'I', on entry Z need not be set and on exit, */
 | |
| /* >           if INFO = 0, Z contains the unitary matrix Z of the Schur */
 | |
| /* >           vectors of H.  If COMPZ = 'V', on entry Z must contain an */
 | |
| /* >           N-by-N matrix Q, which is assumed to be equal to the unit */
 | |
| /* >           matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit, */
 | |
| /* >           if INFO = 0, Z contains Q*Z. */
 | |
| /* >           Normally Q is the unitary matrix generated by ZUNGHR */
 | |
| /* >           after the call to ZGEHRD which formed the Hessenberg matrix */
 | |
| /* >           H. (The output value of Z when INFO > 0 is given under */
 | |
| /* >           the description of INFO below.) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDZ */
 | |
| /* > \verbatim */
 | |
| /* >          LDZ is INTEGER */
 | |
| /* >           The leading dimension of the array Z.  if COMPZ = 'I' or */
 | |
| /* >           COMPZ = 'V', then LDZ >= MAX(1,N).  Otherwise, LDZ >= 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX*16 array, dimension (LWORK) */
 | |
| /* >           On exit, if INFO = 0, WORK(1) returns an estimate of */
 | |
| /* >           the optimal value for LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >           The dimension of the array WORK.  LWORK >= f2cmax(1,N) */
 | |
| /* >           is sufficient and delivers very good and sometimes */
 | |
| /* >           optimal performance.  However, LWORK as large as 11*N */
 | |
| /* >           may be required for optimal performance.  A workspace */
 | |
| /* >           query is recommended to determine the optimal workspace */
 | |
| /* >           size. */
 | |
| /* > */
 | |
| /* >           If LWORK = -1, then ZHSEQR does a workspace query. */
 | |
| /* >           In this case, ZHSEQR checks the input parameters and */
 | |
| /* >           estimates the optimal workspace size for the given */
 | |
| /* >           values of N, ILO and IHI.  The estimate is returned */
 | |
| /* >           in WORK(1).  No error message related to LWORK is */
 | |
| /* >           issued by XERBLA.  Neither H nor Z are accessed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >             = 0:  successful exit */
 | |
| /* >             < 0:  if INFO = -i, the i-th argument had an illegal */
 | |
| /* >                    value */
 | |
| /* >             > 0:  if INFO = i, ZHSEQR failed to compute all of */
 | |
| /* >                the eigenvalues.  Elements 1:ilo-1 and i+1:n of W */
 | |
| /* >                contain those eigenvalues which have been */
 | |
| /* >                successfully computed.  (Failures are rare.) */
 | |
| /* > */
 | |
| /* >                If INFO > 0 and JOB = 'E', then on exit, the */
 | |
| /* >                remaining unconverged eigenvalues are the eigen- */
 | |
| /* >                values of the upper Hessenberg matrix rows and */
 | |
| /* >                columns ILO through INFO of the final, output */
 | |
| /* >                value of H. */
 | |
| /* > */
 | |
| /* >                If INFO > 0 and JOB   = 'S', then on exit */
 | |
| /* > */
 | |
| /* >           (*)  (initial value of H)*U  = U*(final value of H) */
 | |
| /* > */
 | |
| /* >                where U is a unitary matrix.  The final */
 | |
| /* >                value of  H is upper Hessenberg and triangular in */
 | |
| /* >                rows and columns INFO+1 through IHI. */
 | |
| /* > */
 | |
| /* >                If INFO > 0 and COMPZ = 'V', then on exit */
 | |
| /* > */
 | |
| /* >                  (final value of Z)  =  (initial value of Z)*U */
 | |
| /* > */
 | |
| /* >                where U is the unitary matrix in (*) (regard- */
 | |
| /* >                less of the value of JOB.) */
 | |
| /* > */
 | |
| /* >                If INFO > 0 and COMPZ = 'I', then on exit */
 | |
| /* >                      (final value of Z)  = U */
 | |
| /* >                where U is the unitary matrix in (*) (regard- */
 | |
| /* >                less of the value of JOB.) */
 | |
| /* > */
 | |
| /* >                If INFO > 0 and COMPZ = 'N', then Z is not */
 | |
| /* >                accessed. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complex16OTHERcomputational */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* >       Karen Braman and Ralph Byers, Department of Mathematics, */
 | |
| /* >       University of Kansas, USA */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >             Default values supplied by */
 | |
| /* >             ILAENV(ISPEC,'ZHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK). */
 | |
| /* >             It is suggested that these defaults be adjusted in order */
 | |
| /* >             to attain best performance in each particular */
 | |
| /* >             computational environment. */
 | |
| /* > */
 | |
| /* >            ISPEC=12: The ZLAHQR vs ZLAQR0 crossover point. */
 | |
| /* >                      Default: 75. (Must be at least 11.) */
 | |
| /* > */
 | |
| /* >            ISPEC=13: Recommended deflation window size. */
 | |
| /* >                      This depends on ILO, IHI and NS.  NS is the */
 | |
| /* >                      number of simultaneous shifts returned */
 | |
| /* >                      by ILAENV(ISPEC=15).  (See ISPEC=15 below.) */
 | |
| /* >                      The default for (IHI-ILO+1) <= 500 is NS. */
 | |
| /* >                      The default for (IHI-ILO+1) >  500 is 3*NS/2. */
 | |
| /* > */
 | |
| /* >            ISPEC=14: Nibble crossover point. (See IPARMQ for */
 | |
| /* >                      details.)  Default: 14% of deflation window */
 | |
| /* >                      size. */
 | |
| /* > */
 | |
| /* >            ISPEC=15: Number of simultaneous shifts in a multishift */
 | |
| /* >                      QR iteration. */
 | |
| /* > */
 | |
| /* >                      If IHI-ILO+1 is ... */
 | |
| /* > */
 | |
| /* >                      greater than      ...but less    ... the */
 | |
| /* >                      or equal to ...      than        default is */
 | |
| /* > */
 | |
| /* >                           1               30          NS =   2(+) */
 | |
| /* >                          30               60          NS =   4(+) */
 | |
| /* >                          60              150          NS =  10(+) */
 | |
| /* >                         150              590          NS =  ** */
 | |
| /* >                         590             3000          NS =  64 */
 | |
| /* >                        3000             6000          NS = 128 */
 | |
| /* >                        6000             infinity      NS = 256 */
 | |
| /* > */
 | |
| /* >                  (+)  By default some or all matrices of this order */
 | |
| /* >                       are passed to the implicit double shift routine */
 | |
| /* >                       ZLAHQR and this parameter is ignored.  See */
 | |
| /* >                       ISPEC=12 above and comments in IPARMQ for */
 | |
| /* >                       details. */
 | |
| /* > */
 | |
| /* >                 (**)  The asterisks (**) indicate an ad-hoc */
 | |
| /* >                       function of N increasing from 10 to 64. */
 | |
| /* > */
 | |
| /* >            ISPEC=16: Select structured matrix multiply. */
 | |
| /* >                      If the number of simultaneous shifts (specified */
 | |
| /* >                      by ISPEC=15) is less than 14, then the default */
 | |
| /* >                      for ISPEC=16 is 0.  Otherwise the default for */
 | |
| /* >                      ISPEC=16 is 2. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \par References: */
 | |
| /*  ================ */
 | |
| /* > */
 | |
| /* >       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
 | |
| /* >       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
 | |
| /* >       Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
 | |
| /* >       929--947, 2002. */
 | |
| /* > \n */
 | |
| /* >       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
 | |
| /* >       Algorithm Part II: Aggressive Early Deflation, SIAM Journal */
 | |
| /* >       of Matrix Analysis, volume 23, pages 948--973, 2002. */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ int zhseqr_(char *job, char *compz, integer *n, integer *ilo,
 | |
| 	 integer *ihi, doublecomplex *h__, integer *ldh, doublecomplex *w, 
 | |
| 	doublecomplex *z__, integer *ldz, doublecomplex *work, integer *lwork,
 | |
| 	 integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     address a__1[2];
 | |
|     integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3[2];
 | |
|     doublereal d__1, d__2, d__3;
 | |
|     doublecomplex z__1;
 | |
|     char ch__1[2];
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer kbot, nmin;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     logical initz;
 | |
|     doublecomplex workl[49];
 | |
|     logical wantt, wantz;
 | |
|     extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *), zlaqr0_(logical *, logical *, 
 | |
| 	    integer *, integer *, integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *, integer *, doublecomplex *, integer *,
 | |
| 	     doublecomplex *, integer *, integer *);
 | |
|     doublecomplex hl[2401]	/* was [49][49] */;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     extern /* Subroutine */ int zlahqr_(logical *, logical *, integer *, 
 | |
| 	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
 | |
| 	     integer *, integer *, doublecomplex *, integer *, integer *), 
 | |
| 	    zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *), zlaset_(char *, integer *, 
 | |
| 	    integer *, doublecomplex *, doublecomplex *, doublecomplex *, 
 | |
| 	    integer *);
 | |
|     logical lquery;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     ==== Matrices of order NTINY or smaller must be processed by */
 | |
| /*     .    ZLAHQR because of insufficient subdiagonal scratch space. */
 | |
| /*     .    (This is a hard limit.) ==== */
 | |
| 
 | |
| /*     ==== NL allocates some local workspace to help small matrices */
 | |
| /*     .    through a rare ZLAHQR failure.  NL > NTINY = 15 is */
 | |
| /*     .    required and NL <= NMIN = ILAENV(ISPEC=12,...) is recom- */
 | |
| /*     .    mended.  (The default value of NMIN is 75.)  Using NL = 49 */
 | |
| /*     .    allows up to six simultaneous shifts and a 16-by-16 */
 | |
| /*     .    deflation window.  ==== */
 | |
| 
 | |
| /*     ==== Decode and check the input parameters. ==== */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     h_dim1 = *ldh;
 | |
|     h_offset = 1 + h_dim1 * 1;
 | |
|     h__ -= h_offset;
 | |
|     --w;
 | |
|     z_dim1 = *ldz;
 | |
|     z_offset = 1 + z_dim1 * 1;
 | |
|     z__ -= z_offset;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     wantt = lsame_(job, "S");
 | |
|     initz = lsame_(compz, "I");
 | |
|     wantz = initz || lsame_(compz, "V");
 | |
|     d__1 = (doublereal) f2cmax(1,*n);
 | |
|     z__1.r = d__1, z__1.i = 0.;
 | |
|     work[1].r = z__1.r, work[1].i = z__1.i;
 | |
|     lquery = *lwork == -1;
 | |
| 
 | |
|     *info = 0;
 | |
|     if (! lsame_(job, "E") && ! wantt) {
 | |
| 	*info = -1;
 | |
|     } else if (! lsame_(compz, "N") && ! wantz) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*ilo < 1 || *ilo > f2cmax(1,*n)) {
 | |
| 	*info = -4;
 | |
|     } else if (*ihi < f2cmin(*ilo,*n) || *ihi > *n) {
 | |
| 	*info = -5;
 | |
|     } else if (*ldh < f2cmax(1,*n)) {
 | |
| 	*info = -7;
 | |
|     } else if (*ldz < 1 || wantz && *ldz < f2cmax(1,*n)) {
 | |
| 	*info = -10;
 | |
|     } else if (*lwork < f2cmax(1,*n) && ! lquery) {
 | |
| 	*info = -12;
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 
 | |
| /*        ==== Quick return in case of invalid argument. ==== */
 | |
| 
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZHSEQR", &i__1, (ftnlen)6);
 | |
| 	return 0;
 | |
| 
 | |
|     } else if (*n == 0) {
 | |
| 
 | |
| /*        ==== Quick return in case N = 0; nothing to do. ==== */
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|     } else if (lquery) {
 | |
| 
 | |
| /*        ==== Quick return in case of a workspace query ==== */
 | |
| 
 | |
| 	zlaqr0_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1], ilo, 
 | |
| 		ihi, &z__[z_offset], ldz, &work[1], lwork, info);
 | |
| /*        ==== Ensure reported workspace size is backward-compatible with */
 | |
| /*        .    previous LAPACK versions. ==== */
 | |
| /* Computing MAX */
 | |
| 	d__2 = work[1].r, d__3 = (doublereal) f2cmax(1,*n);
 | |
| 	d__1 = f2cmax(d__2,d__3);
 | |
| 	z__1.r = d__1, z__1.i = 0.;
 | |
| 	work[1].r = z__1.r, work[1].i = z__1.i;
 | |
| 	return 0;
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /*        ==== copy eigenvalues isolated by ZGEBAL ==== */
 | |
| 
 | |
| 	if (*ilo > 1) {
 | |
| 	    i__1 = *ilo - 1;
 | |
| 	    i__2 = *ldh + 1;
 | |
| 	    zcopy_(&i__1, &h__[h_offset], &i__2, &w[1], &c__1);
 | |
| 	}
 | |
| 	if (*ihi < *n) {
 | |
| 	    i__1 = *n - *ihi;
 | |
| 	    i__2 = *ldh + 1;
 | |
| 	    zcopy_(&i__1, &h__[*ihi + 1 + (*ihi + 1) * h_dim1], &i__2, &w[*
 | |
| 		    ihi + 1], &c__1);
 | |
| 	}
 | |
| 
 | |
| /*        ==== Initialize Z, if requested ==== */
 | |
| 
 | |
| 	if (initz) {
 | |
| 	    zlaset_("A", n, n, &c_b1, &c_b2, &z__[z_offset], ldz);
 | |
| 	}
 | |
| 
 | |
| /*        ==== Quick return if possible ==== */
 | |
| 
 | |
| 	if (*ilo == *ihi) {
 | |
| 	    i__1 = *ilo;
 | |
| 	    i__2 = *ilo + *ilo * h_dim1;
 | |
| 	    w[i__1].r = h__[i__2].r, w[i__1].i = h__[i__2].i;
 | |
| 	    return 0;
 | |
| 	}
 | |
| 
 | |
| /*        ==== ZLAHQR/ZLAQR0 crossover point ==== */
 | |
| 
 | |
| /* Writing concatenation */
 | |
| 	i__3[0] = 1, a__1[0] = job;
 | |
| 	i__3[1] = 1, a__1[1] = compz;
 | |
| 	s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
 | |
| 	nmin = ilaenv_(&c__12, "ZHSEQR", ch__1, n, ilo, ihi, lwork, (ftnlen)6,
 | |
| 		 (ftnlen)2);
 | |
| 	nmin = f2cmax(15,nmin);
 | |
| 
 | |
| /*        ==== ZLAQR0 for big matrices; ZLAHQR for small ones ==== */
 | |
| 
 | |
| 	if (*n > nmin) {
 | |
| 	    zlaqr0_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1], 
 | |
| 		    ilo, ihi, &z__[z_offset], ldz, &work[1], lwork, info);
 | |
| 	} else {
 | |
| 
 | |
| /*           ==== Small matrix ==== */
 | |
| 
 | |
| 	    zlahqr_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1], 
 | |
| 		    ilo, ihi, &z__[z_offset], ldz, info);
 | |
| 
 | |
| 	    if (*info > 0) {
 | |
| 
 | |
| /*              ==== A rare ZLAHQR failure!  ZLAQR0 sometimes succeeds */
 | |
| /*              .    when ZLAHQR fails. ==== */
 | |
| 
 | |
| 		kbot = *info;
 | |
| 
 | |
| 		if (*n >= 49) {
 | |
| 
 | |
| /*                 ==== Larger matrices have enough subdiagonal scratch */
 | |
| /*                 .    space to call ZLAQR0 directly. ==== */
 | |
| 
 | |
| 		    zlaqr0_(&wantt, &wantz, n, ilo, &kbot, &h__[h_offset], 
 | |
| 			    ldh, &w[1], ilo, ihi, &z__[z_offset], ldz, &work[
 | |
| 			    1], lwork, info);
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| /*                 ==== Tiny matrices don't have enough subdiagonal */
 | |
| /*                 .    scratch space to benefit from ZLAQR0.  Hence, */
 | |
| /*                 .    tiny matrices must be copied into a larger */
 | |
| /*                 .    array before calling ZLAQR0. ==== */
 | |
| 
 | |
| 		    zlacpy_("A", n, n, &h__[h_offset], ldh, hl, &c__49);
 | |
| 		    i__1 = *n + 1 + *n * 49 - 50;
 | |
| 		    hl[i__1].r = 0., hl[i__1].i = 0.;
 | |
| 		    i__1 = 49 - *n;
 | |
| 		    zlaset_("A", &c__49, &i__1, &c_b1, &c_b1, &hl[(*n + 1) * 
 | |
| 			    49 - 49], &c__49);
 | |
| 		    zlaqr0_(&wantt, &wantz, &c__49, ilo, &kbot, hl, &c__49, &
 | |
| 			    w[1], ilo, ihi, &z__[z_offset], ldz, workl, &
 | |
| 			    c__49, info);
 | |
| 		    if (wantt || *info != 0) {
 | |
| 			zlacpy_("A", n, n, hl, &c__49, &h__[h_offset], ldh);
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        ==== Clear out the trash, if necessary. ==== */
 | |
| 
 | |
| 	if ((wantt || *info != 0) && *n > 2) {
 | |
| 	    i__1 = *n - 2;
 | |
| 	    i__2 = *n - 2;
 | |
| 	    zlaset_("L", &i__1, &i__2, &c_b1, &c_b1, &h__[h_dim1 + 3], ldh);
 | |
| 	}
 | |
| 
 | |
| /*        ==== Ensure reported workspace size is backward-compatible with */
 | |
| /*        .    previous LAPACK versions. ==== */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 	d__2 = (doublereal) f2cmax(1,*n), d__3 = work[1].r;
 | |
| 	d__1 = f2cmax(d__2,d__3);
 | |
| 	z__1.r = d__1, z__1.i = 0.;
 | |
| 	work[1].r = z__1.r, work[1].i = z__1.i;
 | |
|     }
 | |
| 
 | |
| /*     ==== End of ZHSEQR ==== */
 | |
| 
 | |
|     return 0;
 | |
| } /* zhseqr_ */
 | |
| 
 |