1394 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1394 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static logical c_false = FALSE_;
 | |
| static integer c__2 = 2;
 | |
| static real c_b21 = 1.f;
 | |
| static real c_b25 = 0.f;
 | |
| static logical c_true = TRUE_;
 | |
| 
 | |
| /* > \brief \b SLAQTR solves a real quasi-triangular system of equations, or a complex quasi-triangular system
 | |
|  of special form, in real arithmetic. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SLAQTR + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqtr.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqtr.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqtr.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SLAQTR( LTRAN, LREAL, N, T, LDT, B, W, SCALE, X, WORK, */
 | |
| /*                          INFO ) */
 | |
| 
 | |
| /*       LOGICAL            LREAL, LTRAN */
 | |
| /*       INTEGER            INFO, LDT, N */
 | |
| /*       REAL               SCALE, W */
 | |
| /*       REAL               B( * ), T( LDT, * ), WORK( * ), X( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SLAQTR solves the real quasi-triangular system */
 | |
| /* > */
 | |
| /* >              op(T)*p = scale*c,               if LREAL = .TRUE. */
 | |
| /* > */
 | |
| /* > or the complex quasi-triangular systems */
 | |
| /* > */
 | |
| /* >            op(T + iB)*(p+iq) = scale*(c+id),  if LREAL = .FALSE. */
 | |
| /* > */
 | |
| /* > in real arithmetic, where T is upper quasi-triangular. */
 | |
| /* > If LREAL = .FALSE., then the first diagonal block of T must be */
 | |
| /* > 1 by 1, B is the specially structured matrix */
 | |
| /* > */
 | |
| /* >                B = [ b(1) b(2) ... b(n) ] */
 | |
| /* >                    [       w            ] */
 | |
| /* >                    [           w        ] */
 | |
| /* >                    [              .     ] */
 | |
| /* >                    [                 w  ] */
 | |
| /* > */
 | |
| /* > op(A) = A or A**T, A**T denotes the transpose of */
 | |
| /* > matrix A. */
 | |
| /* > */
 | |
| /* > On input, X = [ c ].  On output, X = [ p ]. */
 | |
| /* >               [ d ]                  [ q ] */
 | |
| /* > */
 | |
| /* > This subroutine is designed for the condition number estimation */
 | |
| /* > in routine STRSNA. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] LTRAN */
 | |
| /* > \verbatim */
 | |
| /* >          LTRAN is LOGICAL */
 | |
| /* >          On entry, LTRAN specifies the option of conjugate transpose: */
 | |
| /* >             = .FALSE.,    op(T+i*B) = T+i*B, */
 | |
| /* >             = .TRUE.,     op(T+i*B) = (T+i*B)**T. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LREAL */
 | |
| /* > \verbatim */
 | |
| /* >          LREAL is LOGICAL */
 | |
| /* >          On entry, LREAL specifies the input matrix structure: */
 | |
| /* >             = .FALSE.,    the input is complex */
 | |
| /* >             = .TRUE.,     the input is real */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          On entry, N specifies the order of T+i*B. N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] T */
 | |
| /* > \verbatim */
 | |
| /* >          T is REAL array, dimension (LDT,N) */
 | |
| /* >          On entry, T contains a matrix in Schur canonical form. */
 | |
| /* >          If LREAL = .FALSE., then the first diagonal block of T must */
 | |
| /* >          be 1 by 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDT */
 | |
| /* > \verbatim */
 | |
| /* >          LDT is INTEGER */
 | |
| /* >          The leading dimension of the matrix T. LDT >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is REAL array, dimension (N) */
 | |
| /* >          On entry, B contains the elements to form the matrix */
 | |
| /* >          B as described above. */
 | |
| /* >          If LREAL = .TRUE., B is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] W */
 | |
| /* > \verbatim */
 | |
| /* >          W is REAL */
 | |
| /* >          On entry, W is the diagonal element of the matrix B. */
 | |
| /* >          If LREAL = .TRUE., W is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] SCALE */
 | |
| /* > \verbatim */
 | |
| /* >          SCALE is REAL */
 | |
| /* >          On exit, SCALE is the scale factor. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] X */
 | |
| /* > \verbatim */
 | |
| /* >          X is REAL array, dimension (2*N) */
 | |
| /* >          On entry, X contains the right hand side of the system. */
 | |
| /* >          On exit, X is overwritten by the solution. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          On exit, INFO is set to */
 | |
| /* >             0: successful exit. */
 | |
| /* >               1: the some diagonal 1 by 1 block has been perturbed by */
 | |
| /* >                  a small number SMIN to keep nonsingularity. */
 | |
| /* >               2: the some diagonal 2 by 2 block has been perturbed by */
 | |
| /* >                  a small number in SLALN2 to keep nonsingularity. */
 | |
| /* >          NOTE: In the interests of speed, this routine does not */
 | |
| /* >                check the inputs for errors. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup realOTHERauxiliary */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ int slaqtr_(logical *ltran, logical *lreal, integer *n, real 
 | |
| 	*t, integer *ldt, real *b, real *w, real *scale, real *x, real *work, 
 | |
| 	integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer t_dim1, t_offset, i__1, i__2;
 | |
|     real r__1, r__2, r__3, r__4, r__5, r__6;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer ierr;
 | |
|     real smin;
 | |
|     extern real sdot_(integer *, real *, integer *, real *, integer *);
 | |
|     real xmax, d__[4]	/* was [2][2] */;
 | |
|     integer i__, j, k;
 | |
|     real v[4]	/* was [2][2] */, z__;
 | |
|     extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
 | |
|     integer jnext;
 | |
|     extern real sasum_(integer *, real *, integer *);
 | |
|     integer j1, j2;
 | |
|     real sminw;
 | |
|     integer n1, n2;
 | |
|     real xnorm;
 | |
|     extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *, 
 | |
| 	    real *, integer *), slaln2_(logical *, integer *, integer *, real 
 | |
| 	    *, real *, real *, integer *, real *, real *, real *, integer *, 
 | |
| 	    real *, real *, real *, integer *, real *, real *, integer *);
 | |
|     real si, xj, scaloc, sr;
 | |
|     extern real slamch_(char *), slange_(char *, integer *, integer *,
 | |
| 	     real *, integer *, real *);
 | |
|     real bignum;
 | |
|     extern integer isamax_(integer *, real *, integer *);
 | |
|     extern /* Subroutine */ int sladiv_(real *, real *, real *, real *, real *
 | |
| 	    , real *);
 | |
|     logical notran;
 | |
|     real smlnum, rec, eps, tjj, tmp;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /* ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Do not test the input parameters for errors */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     t_dim1 = *ldt;
 | |
|     t_offset = 1 + t_dim1 * 1;
 | |
|     t -= t_offset;
 | |
|     --b;
 | |
|     --x;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     notran = ! (*ltran);
 | |
|     *info = 0;
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Set constants to control overflow */
 | |
| 
 | |
|     eps = slamch_("P");
 | |
|     smlnum = slamch_("S") / eps;
 | |
|     bignum = 1.f / smlnum;
 | |
| 
 | |
|     xnorm = slange_("M", n, n, &t[t_offset], ldt, d__);
 | |
|     if (! (*lreal)) {
 | |
| /* Computing MAX */
 | |
| 	r__1 = xnorm, r__2 = abs(*w), r__1 = f2cmax(r__1,r__2), r__2 = slange_(
 | |
| 		"M", n, &c__1, &b[1], n, d__);
 | |
| 	xnorm = f2cmax(r__1,r__2);
 | |
|     }
 | |
| /* Computing MAX */
 | |
|     r__1 = smlnum, r__2 = eps * xnorm;
 | |
|     smin = f2cmax(r__1,r__2);
 | |
| 
 | |
| /*     Compute 1-norm of each column of strictly upper triangular */
 | |
| /*     part of T to control overflow in triangular solver. */
 | |
| 
 | |
|     work[1] = 0.f;
 | |
|     i__1 = *n;
 | |
|     for (j = 2; j <= i__1; ++j) {
 | |
| 	i__2 = j - 1;
 | |
| 	work[j] = sasum_(&i__2, &t[j * t_dim1 + 1], &c__1);
 | |
| /* L10: */
 | |
|     }
 | |
| 
 | |
|     if (! (*lreal)) {
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 2; i__ <= i__1; ++i__) {
 | |
| 	    work[i__] += (r__1 = b[i__], abs(r__1));
 | |
| /* L20: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     n2 = *n << 1;
 | |
|     n1 = *n;
 | |
|     if (! (*lreal)) {
 | |
| 	n1 = n2;
 | |
|     }
 | |
|     k = isamax_(&n1, &x[1], &c__1);
 | |
|     xmax = (r__1 = x[k], abs(r__1));
 | |
|     *scale = 1.f;
 | |
| 
 | |
|     if (xmax > bignum) {
 | |
| 	*scale = bignum / xmax;
 | |
| 	sscal_(&n1, scale, &x[1], &c__1);
 | |
| 	xmax = bignum;
 | |
|     }
 | |
| 
 | |
|     if (*lreal) {
 | |
| 
 | |
| 	if (notran) {
 | |
| 
 | |
| /*           Solve T*p = scale*c */
 | |
| 
 | |
| 	    jnext = *n;
 | |
| 	    for (j = *n; j >= 1; --j) {
 | |
| 		if (j > jnext) {
 | |
| 		    goto L30;
 | |
| 		}
 | |
| 		j1 = j;
 | |
| 		j2 = j;
 | |
| 		jnext = j - 1;
 | |
| 		if (j > 1) {
 | |
| 		    if (t[j + (j - 1) * t_dim1] != 0.f) {
 | |
| 			j1 = j - 1;
 | |
| 			jnext = j - 2;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		if (j1 == j2) {
 | |
| 
 | |
| /*                 Meet 1 by 1 diagonal block */
 | |
| 
 | |
| /*                 Scale to avoid overflow when computing */
 | |
| /*                     x(j) = b(j)/T(j,j) */
 | |
| 
 | |
| 		    xj = (r__1 = x[j1], abs(r__1));
 | |
| 		    tjj = (r__1 = t[j1 + j1 * t_dim1], abs(r__1));
 | |
| 		    tmp = t[j1 + j1 * t_dim1];
 | |
| 		    if (tjj < smin) {
 | |
| 			tmp = smin;
 | |
| 			tjj = smin;
 | |
| 			*info = 1;
 | |
| 		    }
 | |
| 
 | |
| 		    if (xj == 0.f) {
 | |
| 			goto L30;
 | |
| 		    }
 | |
| 
 | |
| 		    if (tjj < 1.f) {
 | |
| 			if (xj > bignum * tjj) {
 | |
| 			    rec = 1.f / xj;
 | |
| 			    sscal_(n, &rec, &x[1], &c__1);
 | |
| 			    *scale *= rec;
 | |
| 			    xmax *= rec;
 | |
| 			}
 | |
| 		    }
 | |
| 		    x[j1] /= tmp;
 | |
| 		    xj = (r__1 = x[j1], abs(r__1));
 | |
| 
 | |
| /*                 Scale x if necessary to avoid overflow when adding a */
 | |
| /*                 multiple of column j1 of T. */
 | |
| 
 | |
| 		    if (xj > 1.f) {
 | |
| 			rec = 1.f / xj;
 | |
| 			if (work[j1] > (bignum - xmax) * rec) {
 | |
| 			    sscal_(n, &rec, &x[1], &c__1);
 | |
| 			    *scale *= rec;
 | |
| 			}
 | |
| 		    }
 | |
| 		    if (j1 > 1) {
 | |
| 			i__1 = j1 - 1;
 | |
| 			r__1 = -x[j1];
 | |
| 			saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
 | |
| 				, &c__1);
 | |
| 			i__1 = j1 - 1;
 | |
| 			k = isamax_(&i__1, &x[1], &c__1);
 | |
| 			xmax = (r__1 = x[k], abs(r__1));
 | |
| 		    }
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| /*                 Meet 2 by 2 diagonal block */
 | |
| 
 | |
| /*                 Call 2 by 2 linear system solve, to take */
 | |
| /*                 care of possible overflow by scaling factor. */
 | |
| 
 | |
| 		    d__[0] = x[j1];
 | |
| 		    d__[1] = x[j2];
 | |
| 		    slaln2_(&c_false, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1 
 | |
| 			    * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
 | |
| 			    c_b25, &c_b25, v, &c__2, &scaloc, &xnorm, &ierr);
 | |
| 		    if (ierr != 0) {
 | |
| 			*info = 2;
 | |
| 		    }
 | |
| 
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			sscal_(n, &scaloc, &x[1], &c__1);
 | |
| 			*scale *= scaloc;
 | |
| 		    }
 | |
| 		    x[j1] = v[0];
 | |
| 		    x[j2] = v[1];
 | |
| 
 | |
| /*                 Scale V(1,1) (= X(J1)) and/or V(2,1) (=X(J2)) */
 | |
| /*                 to avoid overflow in updating right-hand side. */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 		    r__1 = abs(v[0]), r__2 = abs(v[1]);
 | |
| 		    xj = f2cmax(r__1,r__2);
 | |
| 		    if (xj > 1.f) {
 | |
| 			rec = 1.f / xj;
 | |
| /* Computing MAX */
 | |
| 			r__1 = work[j1], r__2 = work[j2];
 | |
| 			if (f2cmax(r__1,r__2) > (bignum - xmax) * rec) {
 | |
| 			    sscal_(n, &rec, &x[1], &c__1);
 | |
| 			    *scale *= rec;
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| /*                 Update right-hand side */
 | |
| 
 | |
| 		    if (j1 > 1) {
 | |
| 			i__1 = j1 - 1;
 | |
| 			r__1 = -x[j1];
 | |
| 			saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
 | |
| 				, &c__1);
 | |
| 			i__1 = j1 - 1;
 | |
| 			r__1 = -x[j2];
 | |
| 			saxpy_(&i__1, &r__1, &t[j2 * t_dim1 + 1], &c__1, &x[1]
 | |
| 				, &c__1);
 | |
| 			i__1 = j1 - 1;
 | |
| 			k = isamax_(&i__1, &x[1], &c__1);
 | |
| 			xmax = (r__1 = x[k], abs(r__1));
 | |
| 		    }
 | |
| 
 | |
| 		}
 | |
| 
 | |
| L30:
 | |
| 		;
 | |
| 	    }
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*           Solve T**T*p = scale*c */
 | |
| 
 | |
| 	    jnext = 1;
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		if (j < jnext) {
 | |
| 		    goto L40;
 | |
| 		}
 | |
| 		j1 = j;
 | |
| 		j2 = j;
 | |
| 		jnext = j + 1;
 | |
| 		if (j < *n) {
 | |
| 		    if (t[j + 1 + j * t_dim1] != 0.f) {
 | |
| 			j2 = j + 1;
 | |
| 			jnext = j + 2;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		if (j1 == j2) {
 | |
| 
 | |
| /*                 1 by 1 diagonal block */
 | |
| 
 | |
| /*                 Scale if necessary to avoid overflow in forming the */
 | |
| /*                 right-hand side element by inner product. */
 | |
| 
 | |
| 		    xj = (r__1 = x[j1], abs(r__1));
 | |
| 		    if (xmax > 1.f) {
 | |
| 			rec = 1.f / xmax;
 | |
| 			if (work[j1] > (bignum - xj) * rec) {
 | |
| 			    sscal_(n, &rec, &x[1], &c__1);
 | |
| 			    *scale *= rec;
 | |
| 			    xmax *= rec;
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    i__2 = j1 - 1;
 | |
| 		    x[j1] -= sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &
 | |
| 			    c__1);
 | |
| 
 | |
| 		    xj = (r__1 = x[j1], abs(r__1));
 | |
| 		    tjj = (r__1 = t[j1 + j1 * t_dim1], abs(r__1));
 | |
| 		    tmp = t[j1 + j1 * t_dim1];
 | |
| 		    if (tjj < smin) {
 | |
| 			tmp = smin;
 | |
| 			tjj = smin;
 | |
| 			*info = 1;
 | |
| 		    }
 | |
| 
 | |
| 		    if (tjj < 1.f) {
 | |
| 			if (xj > bignum * tjj) {
 | |
| 			    rec = 1.f / xj;
 | |
| 			    sscal_(n, &rec, &x[1], &c__1);
 | |
| 			    *scale *= rec;
 | |
| 			    xmax *= rec;
 | |
| 			}
 | |
| 		    }
 | |
| 		    x[j1] /= tmp;
 | |
| /* Computing MAX */
 | |
| 		    r__2 = xmax, r__3 = (r__1 = x[j1], abs(r__1));
 | |
| 		    xmax = f2cmax(r__2,r__3);
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| /*                 2 by 2 diagonal block */
 | |
| 
 | |
| /*                 Scale if necessary to avoid overflow in forming the */
 | |
| /*                 right-hand side elements by inner product. */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 		    r__3 = (r__1 = x[j1], abs(r__1)), r__4 = (r__2 = x[j2], 
 | |
| 			    abs(r__2));
 | |
| 		    xj = f2cmax(r__3,r__4);
 | |
| 		    if (xmax > 1.f) {
 | |
| 			rec = 1.f / xmax;
 | |
| /* Computing MAX */
 | |
| 			r__1 = work[j2], r__2 = work[j1];
 | |
| 			if (f2cmax(r__1,r__2) > (bignum - xj) * rec) {
 | |
| 			    sscal_(n, &rec, &x[1], &c__1);
 | |
| 			    *scale *= rec;
 | |
| 			    xmax *= rec;
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    i__2 = j1 - 1;
 | |
| 		    d__[0] = x[j1] - sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, 
 | |
| 			    &x[1], &c__1);
 | |
| 		    i__2 = j1 - 1;
 | |
| 		    d__[1] = x[j2] - sdot_(&i__2, &t[j2 * t_dim1 + 1], &c__1, 
 | |
| 			    &x[1], &c__1);
 | |
| 
 | |
| 		    slaln2_(&c_true, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1 *
 | |
| 			     t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &c_b25,
 | |
| 			     &c_b25, v, &c__2, &scaloc, &xnorm, &ierr);
 | |
| 		    if (ierr != 0) {
 | |
| 			*info = 2;
 | |
| 		    }
 | |
| 
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			sscal_(n, &scaloc, &x[1], &c__1);
 | |
| 			*scale *= scaloc;
 | |
| 		    }
 | |
| 		    x[j1] = v[0];
 | |
| 		    x[j2] = v[1];
 | |
| /* Computing MAX */
 | |
| 		    r__3 = (r__1 = x[j1], abs(r__1)), r__4 = (r__2 = x[j2], 
 | |
| 			    abs(r__2)), r__3 = f2cmax(r__3,r__4);
 | |
| 		    xmax = f2cmax(r__3,xmax);
 | |
| 
 | |
| 		}
 | |
| L40:
 | |
| 		;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /* Computing MAX */
 | |
| 	r__1 = eps * abs(*w);
 | |
| 	sminw = f2cmax(r__1,smin);
 | |
| 	if (notran) {
 | |
| 
 | |
| /*           Solve (T + iB)*(p+iq) = c+id */
 | |
| 
 | |
| 	    jnext = *n;
 | |
| 	    for (j = *n; j >= 1; --j) {
 | |
| 		if (j > jnext) {
 | |
| 		    goto L70;
 | |
| 		}
 | |
| 		j1 = j;
 | |
| 		j2 = j;
 | |
| 		jnext = j - 1;
 | |
| 		if (j > 1) {
 | |
| 		    if (t[j + (j - 1) * t_dim1] != 0.f) {
 | |
| 			j1 = j - 1;
 | |
| 			jnext = j - 2;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		if (j1 == j2) {
 | |
| 
 | |
| /*                 1 by 1 diagonal block */
 | |
| 
 | |
| /*                 Scale if necessary to avoid overflow in division */
 | |
| 
 | |
| 		    z__ = *w;
 | |
| 		    if (j1 == 1) {
 | |
| 			z__ = b[1];
 | |
| 		    }
 | |
| 		    xj = (r__1 = x[j1], abs(r__1)) + (r__2 = x[*n + j1], abs(
 | |
| 			    r__2));
 | |
| 		    tjj = (r__1 = t[j1 + j1 * t_dim1], abs(r__1)) + abs(z__);
 | |
| 		    tmp = t[j1 + j1 * t_dim1];
 | |
| 		    if (tjj < sminw) {
 | |
| 			tmp = sminw;
 | |
| 			tjj = sminw;
 | |
| 			*info = 1;
 | |
| 		    }
 | |
| 
 | |
| 		    if (xj == 0.f) {
 | |
| 			goto L70;
 | |
| 		    }
 | |
| 
 | |
| 		    if (tjj < 1.f) {
 | |
| 			if (xj > bignum * tjj) {
 | |
| 			    rec = 1.f / xj;
 | |
| 			    sscal_(&n2, &rec, &x[1], &c__1);
 | |
| 			    *scale *= rec;
 | |
| 			    xmax *= rec;
 | |
| 			}
 | |
| 		    }
 | |
| 		    sladiv_(&x[j1], &x[*n + j1], &tmp, &z__, &sr, &si);
 | |
| 		    x[j1] = sr;
 | |
| 		    x[*n + j1] = si;
 | |
| 		    xj = (r__1 = x[j1], abs(r__1)) + (r__2 = x[*n + j1], abs(
 | |
| 			    r__2));
 | |
| 
 | |
| /*                 Scale x if necessary to avoid overflow when adding a */
 | |
| /*                 multiple of column j1 of T. */
 | |
| 
 | |
| 		    if (xj > 1.f) {
 | |
| 			rec = 1.f / xj;
 | |
| 			if (work[j1] > (bignum - xmax) * rec) {
 | |
| 			    sscal_(&n2, &rec, &x[1], &c__1);
 | |
| 			    *scale *= rec;
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    if (j1 > 1) {
 | |
| 			i__1 = j1 - 1;
 | |
| 			r__1 = -x[j1];
 | |
| 			saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
 | |
| 				, &c__1);
 | |
| 			i__1 = j1 - 1;
 | |
| 			r__1 = -x[*n + j1];
 | |
| 			saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[*
 | |
| 				n + 1], &c__1);
 | |
| 
 | |
| 			x[1] += b[j1] * x[*n + j1];
 | |
| 			x[*n + 1] -= b[j1] * x[j1];
 | |
| 
 | |
| 			xmax = 0.f;
 | |
| 			i__1 = j1 - 1;
 | |
| 			for (k = 1; k <= i__1; ++k) {
 | |
| /* Computing MAX */
 | |
| 			    r__3 = xmax, r__4 = (r__1 = x[k], abs(r__1)) + (
 | |
| 				    r__2 = x[k + *n], abs(r__2));
 | |
| 			    xmax = f2cmax(r__3,r__4);
 | |
| /* L50: */
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| /*                 Meet 2 by 2 diagonal block */
 | |
| 
 | |
| 		    d__[0] = x[j1];
 | |
| 		    d__[1] = x[j2];
 | |
| 		    d__[2] = x[*n + j1];
 | |
| 		    d__[3] = x[*n + j2];
 | |
| 		    r__1 = -(*w);
 | |
| 		    slaln2_(&c_false, &c__2, &c__2, &sminw, &c_b21, &t[j1 + 
 | |
| 			    j1 * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
 | |
| 			    c_b25, &r__1, v, &c__2, &scaloc, &xnorm, &ierr);
 | |
| 		    if (ierr != 0) {
 | |
| 			*info = 2;
 | |
| 		    }
 | |
| 
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			i__1 = *n << 1;
 | |
| 			sscal_(&i__1, &scaloc, &x[1], &c__1);
 | |
| 			*scale = scaloc * *scale;
 | |
| 		    }
 | |
| 		    x[j1] = v[0];
 | |
| 		    x[j2] = v[1];
 | |
| 		    x[*n + j1] = v[2];
 | |
| 		    x[*n + j2] = v[3];
 | |
| 
 | |
| /*                 Scale X(J1), .... to avoid overflow in */
 | |
| /*                 updating right hand side. */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 		    r__1 = abs(v[0]) + abs(v[2]), r__2 = abs(v[1]) + abs(v[3])
 | |
| 			    ;
 | |
| 		    xj = f2cmax(r__1,r__2);
 | |
| 		    if (xj > 1.f) {
 | |
| 			rec = 1.f / xj;
 | |
| /* Computing MAX */
 | |
| 			r__1 = work[j1], r__2 = work[j2];
 | |
| 			if (f2cmax(r__1,r__2) > (bignum - xmax) * rec) {
 | |
| 			    sscal_(&n2, &rec, &x[1], &c__1);
 | |
| 			    *scale *= rec;
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| /*                 Update the right-hand side. */
 | |
| 
 | |
| 		    if (j1 > 1) {
 | |
| 			i__1 = j1 - 1;
 | |
| 			r__1 = -x[j1];
 | |
| 			saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
 | |
| 				, &c__1);
 | |
| 			i__1 = j1 - 1;
 | |
| 			r__1 = -x[j2];
 | |
| 			saxpy_(&i__1, &r__1, &t[j2 * t_dim1 + 1], &c__1, &x[1]
 | |
| 				, &c__1);
 | |
| 
 | |
| 			i__1 = j1 - 1;
 | |
| 			r__1 = -x[*n + j1];
 | |
| 			saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[*
 | |
| 				n + 1], &c__1);
 | |
| 			i__1 = j1 - 1;
 | |
| 			r__1 = -x[*n + j2];
 | |
| 			saxpy_(&i__1, &r__1, &t[j2 * t_dim1 + 1], &c__1, &x[*
 | |
| 				n + 1], &c__1);
 | |
| 
 | |
| 			x[1] = x[1] + b[j1] * x[*n + j1] + b[j2] * x[*n + j2];
 | |
| 			x[*n + 1] = x[*n + 1] - b[j1] * x[j1] - b[j2] * x[j2];
 | |
| 
 | |
| 			xmax = 0.f;
 | |
| 			i__1 = j1 - 1;
 | |
| 			for (k = 1; k <= i__1; ++k) {
 | |
| /* Computing MAX */
 | |
| 			    r__3 = (r__1 = x[k], abs(r__1)) + (r__2 = x[k + *
 | |
| 				    n], abs(r__2));
 | |
| 			    xmax = f2cmax(r__3,xmax);
 | |
| /* L60: */
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		}
 | |
| L70:
 | |
| 		;
 | |
| 	    }
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*           Solve (T + iB)**T*(p+iq) = c+id */
 | |
| 
 | |
| 	    jnext = 1;
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		if (j < jnext) {
 | |
| 		    goto L80;
 | |
| 		}
 | |
| 		j1 = j;
 | |
| 		j2 = j;
 | |
| 		jnext = j + 1;
 | |
| 		if (j < *n) {
 | |
| 		    if (t[j + 1 + j * t_dim1] != 0.f) {
 | |
| 			j2 = j + 1;
 | |
| 			jnext = j + 2;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		if (j1 == j2) {
 | |
| 
 | |
| /*                 1 by 1 diagonal block */
 | |
| 
 | |
| /*                 Scale if necessary to avoid overflow in forming the */
 | |
| /*                 right-hand side element by inner product. */
 | |
| 
 | |
| 		    xj = (r__1 = x[j1], abs(r__1)) + (r__2 = x[j1 + *n], abs(
 | |
| 			    r__2));
 | |
| 		    if (xmax > 1.f) {
 | |
| 			rec = 1.f / xmax;
 | |
| 			if (work[j1] > (bignum - xj) * rec) {
 | |
| 			    sscal_(&n2, &rec, &x[1], &c__1);
 | |
| 			    *scale *= rec;
 | |
| 			    xmax *= rec;
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    i__2 = j1 - 1;
 | |
| 		    x[j1] -= sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &
 | |
| 			    c__1);
 | |
| 		    i__2 = j1 - 1;
 | |
| 		    x[*n + j1] -= sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[
 | |
| 			    *n + 1], &c__1);
 | |
| 		    if (j1 > 1) {
 | |
| 			x[j1] -= b[j1] * x[*n + 1];
 | |
| 			x[*n + j1] += b[j1] * x[1];
 | |
| 		    }
 | |
| 		    xj = (r__1 = x[j1], abs(r__1)) + (r__2 = x[j1 + *n], abs(
 | |
| 			    r__2));
 | |
| 
 | |
| 		    z__ = *w;
 | |
| 		    if (j1 == 1) {
 | |
| 			z__ = b[1];
 | |
| 		    }
 | |
| 
 | |
| /*                 Scale if necessary to avoid overflow in */
 | |
| /*                 complex division */
 | |
| 
 | |
| 		    tjj = (r__1 = t[j1 + j1 * t_dim1], abs(r__1)) + abs(z__);
 | |
| 		    tmp = t[j1 + j1 * t_dim1];
 | |
| 		    if (tjj < sminw) {
 | |
| 			tmp = sminw;
 | |
| 			tjj = sminw;
 | |
| 			*info = 1;
 | |
| 		    }
 | |
| 
 | |
| 		    if (tjj < 1.f) {
 | |
| 			if (xj > bignum * tjj) {
 | |
| 			    rec = 1.f / xj;
 | |
| 			    sscal_(&n2, &rec, &x[1], &c__1);
 | |
| 			    *scale *= rec;
 | |
| 			    xmax *= rec;
 | |
| 			}
 | |
| 		    }
 | |
| 		    r__1 = -z__;
 | |
| 		    sladiv_(&x[j1], &x[*n + j1], &tmp, &r__1, &sr, &si);
 | |
| 		    x[j1] = sr;
 | |
| 		    x[j1 + *n] = si;
 | |
| /* Computing MAX */
 | |
| 		    r__3 = (r__1 = x[j1], abs(r__1)) + (r__2 = x[j1 + *n], 
 | |
| 			    abs(r__2));
 | |
| 		    xmax = f2cmax(r__3,xmax);
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| /*                 2 by 2 diagonal block */
 | |
| 
 | |
| /*                 Scale if necessary to avoid overflow in forming the */
 | |
| /*                 right-hand side element by inner product. */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 		    r__5 = (r__1 = x[j1], abs(r__1)) + (r__2 = x[*n + j1], 
 | |
| 			    abs(r__2)), r__6 = (r__3 = x[j2], abs(r__3)) + (
 | |
| 			    r__4 = x[*n + j2], abs(r__4));
 | |
| 		    xj = f2cmax(r__5,r__6);
 | |
| 		    if (xmax > 1.f) {
 | |
| 			rec = 1.f / xmax;
 | |
| /* Computing MAX */
 | |
| 			r__1 = work[j1], r__2 = work[j2];
 | |
| 			if (f2cmax(r__1,r__2) > (bignum - xj) / xmax) {
 | |
| 			    sscal_(&n2, &rec, &x[1], &c__1);
 | |
| 			    *scale *= rec;
 | |
| 			    xmax *= rec;
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    i__2 = j1 - 1;
 | |
| 		    d__[0] = x[j1] - sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, 
 | |
| 			    &x[1], &c__1);
 | |
| 		    i__2 = j1 - 1;
 | |
| 		    d__[1] = x[j2] - sdot_(&i__2, &t[j2 * t_dim1 + 1], &c__1, 
 | |
| 			    &x[1], &c__1);
 | |
| 		    i__2 = j1 - 1;
 | |
| 		    d__[2] = x[*n + j1] - sdot_(&i__2, &t[j1 * t_dim1 + 1], &
 | |
| 			    c__1, &x[*n + 1], &c__1);
 | |
| 		    i__2 = j1 - 1;
 | |
| 		    d__[3] = x[*n + j2] - sdot_(&i__2, &t[j2 * t_dim1 + 1], &
 | |
| 			    c__1, &x[*n + 1], &c__1);
 | |
| 		    d__[0] -= b[j1] * x[*n + 1];
 | |
| 		    d__[1] -= b[j2] * x[*n + 1];
 | |
| 		    d__[2] += b[j1] * x[1];
 | |
| 		    d__[3] += b[j2] * x[1];
 | |
| 
 | |
| 		    slaln2_(&c_true, &c__2, &c__2, &sminw, &c_b21, &t[j1 + j1 
 | |
| 			    * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
 | |
| 			    c_b25, w, v, &c__2, &scaloc, &xnorm, &ierr);
 | |
| 		    if (ierr != 0) {
 | |
| 			*info = 2;
 | |
| 		    }
 | |
| 
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			sscal_(&n2, &scaloc, &x[1], &c__1);
 | |
| 			*scale = scaloc * *scale;
 | |
| 		    }
 | |
| 		    x[j1] = v[0];
 | |
| 		    x[j2] = v[1];
 | |
| 		    x[*n + j1] = v[2];
 | |
| 		    x[*n + j2] = v[3];
 | |
| /* Computing MAX */
 | |
| 		    r__5 = (r__1 = x[j1], abs(r__1)) + (r__2 = x[*n + j1], 
 | |
| 			    abs(r__2)), r__6 = (r__3 = x[j2], abs(r__3)) + (
 | |
| 			    r__4 = x[*n + j2], abs(r__4)), r__5 = f2cmax(r__5,
 | |
| 			    r__6);
 | |
| 		    xmax = f2cmax(r__5,xmax);
 | |
| 
 | |
| 		}
 | |
| 
 | |
| L80:
 | |
| 		;
 | |
| 	    }
 | |
| 
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| /*     End of SLAQTR */
 | |
| 
 | |
| } /* slaqtr_ */
 | |
| 
 |