1259 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1259 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b SLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse 
 | |
| iteration. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SLAEIN + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaein.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaein.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaein.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B, */
 | |
| /*                          LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO ) */
 | |
| 
 | |
| /*       LOGICAL            NOINIT, RIGHTV */
 | |
| /*       INTEGER            INFO, LDB, LDH, N */
 | |
| /*       REAL               BIGNUM, EPS3, SMLNUM, WI, WR */
 | |
| /*       REAL               B( LDB, * ), H( LDH, * ), VI( * ), VR( * ), */
 | |
| /*      $                   WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SLAEIN uses inverse iteration to find a right or left eigenvector */
 | |
| /* > corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg */
 | |
| /* > matrix H. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] RIGHTV */
 | |
| /* > \verbatim */
 | |
| /* >          RIGHTV is LOGICAL */
 | |
| /* >          = .TRUE. : compute right eigenvector; */
 | |
| /* >          = .FALSE.: compute left eigenvector. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NOINIT */
 | |
| /* > \verbatim */
 | |
| /* >          NOINIT is LOGICAL */
 | |
| /* >          = .TRUE. : no initial vector supplied in (VR,VI). */
 | |
| /* >          = .FALSE.: initial vector supplied in (VR,VI). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix H.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] H */
 | |
| /* > \verbatim */
 | |
| /* >          H is REAL array, dimension (LDH,N) */
 | |
| /* >          The upper Hessenberg matrix H. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDH */
 | |
| /* > \verbatim */
 | |
| /* >          LDH is INTEGER */
 | |
| /* >          The leading dimension of the array H.  LDH >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] WR */
 | |
| /* > \verbatim */
 | |
| /* >          WR is REAL */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] WI */
 | |
| /* > \verbatim */
 | |
| /* >          WI is REAL */
 | |
| /* >          The real and imaginary parts of the eigenvalue of H whose */
 | |
| /* >          corresponding right or left eigenvector is to be computed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] VR */
 | |
| /* > \verbatim */
 | |
| /* >          VR is REAL array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] VI */
 | |
| /* > \verbatim */
 | |
| /* >          VI is REAL array, dimension (N) */
 | |
| /* >          On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain */
 | |
| /* >          a real starting vector for inverse iteration using the real */
 | |
| /* >          eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI */
 | |
| /* >          must contain the real and imaginary parts of a complex */
 | |
| /* >          starting vector for inverse iteration using the complex */
 | |
| /* >          eigenvalue (WR,WI); otherwise VR and VI need not be set. */
 | |
| /* >          On exit, if WI = 0.0 (real eigenvalue), VR contains the */
 | |
| /* >          computed real eigenvector; if WI.ne.0.0 (complex eigenvalue), */
 | |
| /* >          VR and VI contain the real and imaginary parts of the */
 | |
| /* >          computed complex eigenvector. The eigenvector is normalized */
 | |
| /* >          so that the component of largest magnitude has magnitude 1; */
 | |
| /* >          here the magnitude of a complex number (x,y) is taken to be */
 | |
| /* >          |x| + |y|. */
 | |
| /* >          VI is not referenced if WI = 0.0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is REAL array, dimension (LDB,N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of the array B.  LDB >= N+1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] EPS3 */
 | |
| /* > \verbatim */
 | |
| /* >          EPS3 is REAL */
 | |
| /* >          A small machine-dependent value which is used to perturb */
 | |
| /* >          close eigenvalues, and to replace zero pivots. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SMLNUM */
 | |
| /* > \verbatim */
 | |
| /* >          SMLNUM is REAL */
 | |
| /* >          A machine-dependent value close to the underflow threshold. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] BIGNUM */
 | |
| /* > \verbatim */
 | |
| /* >          BIGNUM is REAL */
 | |
| /* >          A machine-dependent value close to the overflow threshold. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          = 1:  inverse iteration did not converge; VR is set to the */
 | |
| /* >                last iterate, and so is VI if WI.ne.0.0. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup realOTHERauxiliary */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ int slaein_(logical *rightv, logical *noinit, integer *n, 
 | |
| 	real *h__, integer *ldh, real *wr, real *wi, real *vr, real *vi, real 
 | |
| 	*b, integer *ldb, real *work, real *eps3, real *smlnum, real *bignum, 
 | |
| 	integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer b_dim1, b_offset, h_dim1, h_offset, i__1, i__2, i__3, i__4;
 | |
|     real r__1, r__2, r__3, r__4;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer ierr;
 | |
|     real temp, norm, vmax;
 | |
|     extern real snrm2_(integer *, real *, integer *);
 | |
|     integer i__, j;
 | |
|     real scale, w, x, y;
 | |
|     extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
 | |
|     char trans[1];
 | |
|     real vcrit;
 | |
|     extern real sasum_(integer *, real *, integer *);
 | |
|     integer i1, i2, i3;
 | |
|     real rootn, vnorm, w1;
 | |
|     extern real slapy2_(real *, real *);
 | |
|     real ei, ej, absbii, absbjj, xi, xr;
 | |
|     extern integer isamax_(integer *, real *, integer *);
 | |
|     extern /* Subroutine */ int sladiv_(real *, real *, real *, real *, real *
 | |
| 	    , real *);
 | |
|     char normin[1];
 | |
|     real nrmsml;
 | |
|     extern /* Subroutine */ int slatrs_(char *, char *, char *, char *, 
 | |
| 	    integer *, real *, integer *, real *, real *, real *, integer *);
 | |
|     real growto, rec;
 | |
|     integer its;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     h_dim1 = *ldh;
 | |
|     h_offset = 1 + h_dim1 * 1;
 | |
|     h__ -= h_offset;
 | |
|     --vr;
 | |
|     --vi;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
| /*     GROWTO is the threshold used in the acceptance test for an */
 | |
| /*     eigenvector. */
 | |
| 
 | |
|     rootn = sqrt((real) (*n));
 | |
|     growto = .1f / rootn;
 | |
| /* Computing MAX */
 | |
|     r__1 = 1.f, r__2 = *eps3 * rootn;
 | |
|     nrmsml = f2cmax(r__1,r__2) * *smlnum;
 | |
| 
 | |
| /*     Form B = H - (WR,WI)*I (except that the subdiagonal elements and */
 | |
| /*     the imaginary parts of the diagonal elements are not stored). */
 | |
| 
 | |
|     i__1 = *n;
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 	i__2 = j - 1;
 | |
| 	for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 	    b[i__ + j * b_dim1] = h__[i__ + j * h_dim1];
 | |
| /* L10: */
 | |
| 	}
 | |
| 	b[j + j * b_dim1] = h__[j + j * h_dim1] - *wr;
 | |
| /* L20: */
 | |
|     }
 | |
| 
 | |
|     if (*wi == 0.f) {
 | |
| 
 | |
| /*        Real eigenvalue. */
 | |
| 
 | |
| 	if (*noinit) {
 | |
| 
 | |
| /*           Set initial vector. */
 | |
| 
 | |
| 	    i__1 = *n;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 		vr[i__] = *eps3;
 | |
| /* L30: */
 | |
| 	    }
 | |
| 	} else {
 | |
| 
 | |
| /*           Scale supplied initial vector. */
 | |
| 
 | |
| 	    vnorm = snrm2_(n, &vr[1], &c__1);
 | |
| 	    r__1 = *eps3 * rootn / f2cmax(vnorm,nrmsml);
 | |
| 	    sscal_(n, &r__1, &vr[1], &c__1);
 | |
| 	}
 | |
| 
 | |
| 	if (*rightv) {
 | |
| 
 | |
| /*           LU decomposition with partial pivoting of B, replacing zero */
 | |
| /*           pivots by EPS3. */
 | |
| 
 | |
| 	    i__1 = *n - 1;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 		ei = h__[i__ + 1 + i__ * h_dim1];
 | |
| 		if ((r__1 = b[i__ + i__ * b_dim1], abs(r__1)) < abs(ei)) {
 | |
| 
 | |
| /*                 Interchange rows and eliminate. */
 | |
| 
 | |
| 		    x = b[i__ + i__ * b_dim1] / ei;
 | |
| 		    b[i__ + i__ * b_dim1] = ei;
 | |
| 		    i__2 = *n;
 | |
| 		    for (j = i__ + 1; j <= i__2; ++j) {
 | |
| 			temp = b[i__ + 1 + j * b_dim1];
 | |
| 			b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - x * 
 | |
| 				temp;
 | |
| 			b[i__ + j * b_dim1] = temp;
 | |
| /* L40: */
 | |
| 		    }
 | |
| 		} else {
 | |
| 
 | |
| /*                 Eliminate without interchange. */
 | |
| 
 | |
| 		    if (b[i__ + i__ * b_dim1] == 0.f) {
 | |
| 			b[i__ + i__ * b_dim1] = *eps3;
 | |
| 		    }
 | |
| 		    x = ei / b[i__ + i__ * b_dim1];
 | |
| 		    if (x != 0.f) {
 | |
| 			i__2 = *n;
 | |
| 			for (j = i__ + 1; j <= i__2; ++j) {
 | |
| 			    b[i__ + 1 + j * b_dim1] -= x * b[i__ + j * b_dim1]
 | |
| 				    ;
 | |
| /* L50: */
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| /* L60: */
 | |
| 	    }
 | |
| 	    if (b[*n + *n * b_dim1] == 0.f) {
 | |
| 		b[*n + *n * b_dim1] = *eps3;
 | |
| 	    }
 | |
| 
 | |
| 	    *(unsigned char *)trans = 'N';
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*           UL decomposition with partial pivoting of B, replacing zero */
 | |
| /*           pivots by EPS3. */
 | |
| 
 | |
| 	    for (j = *n; j >= 2; --j) {
 | |
| 		ej = h__[j + (j - 1) * h_dim1];
 | |
| 		if ((r__1 = b[j + j * b_dim1], abs(r__1)) < abs(ej)) {
 | |
| 
 | |
| /*                 Interchange columns and eliminate. */
 | |
| 
 | |
| 		    x = b[j + j * b_dim1] / ej;
 | |
| 		    b[j + j * b_dim1] = ej;
 | |
| 		    i__1 = j - 1;
 | |
| 		    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			temp = b[i__ + (j - 1) * b_dim1];
 | |
| 			b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - x * 
 | |
| 				temp;
 | |
| 			b[i__ + j * b_dim1] = temp;
 | |
| /* L70: */
 | |
| 		    }
 | |
| 		} else {
 | |
| 
 | |
| /*                 Eliminate without interchange. */
 | |
| 
 | |
| 		    if (b[j + j * b_dim1] == 0.f) {
 | |
| 			b[j + j * b_dim1] = *eps3;
 | |
| 		    }
 | |
| 		    x = ej / b[j + j * b_dim1];
 | |
| 		    if (x != 0.f) {
 | |
| 			i__1 = j - 1;
 | |
| 			for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			    b[i__ + (j - 1) * b_dim1] -= x * b[i__ + j * 
 | |
| 				    b_dim1];
 | |
| /* L80: */
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| /* L90: */
 | |
| 	    }
 | |
| 	    if (b[b_dim1 + 1] == 0.f) {
 | |
| 		b[b_dim1 + 1] = *eps3;
 | |
| 	    }
 | |
| 
 | |
| 	    *(unsigned char *)trans = 'T';
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	*(unsigned char *)normin = 'N';
 | |
| 	i__1 = *n;
 | |
| 	for (its = 1; its <= i__1; ++its) {
 | |
| 
 | |
| /*           Solve U*x = scale*v for a right eigenvector */
 | |
| /*             or U**T*x = scale*v for a left eigenvector, */
 | |
| /*           overwriting x on v. */
 | |
| 
 | |
| 	    slatrs_("Upper", trans, "Nonunit", normin, n, &b[b_offset], ldb, &
 | |
| 		    vr[1], &scale, &work[1], &ierr);
 | |
| 	    *(unsigned char *)normin = 'Y';
 | |
| 
 | |
| /*           Test for sufficient growth in the norm of v. */
 | |
| 
 | |
| 	    vnorm = sasum_(n, &vr[1], &c__1);
 | |
| 	    if (vnorm >= growto * scale) {
 | |
| 		goto L120;
 | |
| 	    }
 | |
| 
 | |
| /*           Choose new orthogonal starting vector and try again. */
 | |
| 
 | |
| 	    temp = *eps3 / (rootn + 1.f);
 | |
| 	    vr[1] = *eps3;
 | |
| 	    i__2 = *n;
 | |
| 	    for (i__ = 2; i__ <= i__2; ++i__) {
 | |
| 		vr[i__] = temp;
 | |
| /* L100: */
 | |
| 	    }
 | |
| 	    vr[*n - its + 1] -= *eps3 * rootn;
 | |
| /* L110: */
 | |
| 	}
 | |
| 
 | |
| /*        Failure to find eigenvector in N iterations. */
 | |
| 
 | |
| 	*info = 1;
 | |
| 
 | |
| L120:
 | |
| 
 | |
| /*        Normalize eigenvector. */
 | |
| 
 | |
| 	i__ = isamax_(n, &vr[1], &c__1);
 | |
| 	r__2 = 1.f / (r__1 = vr[i__], abs(r__1));
 | |
| 	sscal_(n, &r__2, &vr[1], &c__1);
 | |
|     } else {
 | |
| 
 | |
| /*        Complex eigenvalue. */
 | |
| 
 | |
| 	if (*noinit) {
 | |
| 
 | |
| /*           Set initial vector. */
 | |
| 
 | |
| 	    i__1 = *n;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 		vr[i__] = *eps3;
 | |
| 		vi[i__] = 0.f;
 | |
| /* L130: */
 | |
| 	    }
 | |
| 	} else {
 | |
| 
 | |
| /*           Scale supplied initial vector. */
 | |
| 
 | |
| 	    r__1 = snrm2_(n, &vr[1], &c__1);
 | |
| 	    r__2 = snrm2_(n, &vi[1], &c__1);
 | |
| 	    norm = slapy2_(&r__1, &r__2);
 | |
| 	    rec = *eps3 * rootn / f2cmax(norm,nrmsml);
 | |
| 	    sscal_(n, &rec, &vr[1], &c__1);
 | |
| 	    sscal_(n, &rec, &vi[1], &c__1);
 | |
| 	}
 | |
| 
 | |
| 	if (*rightv) {
 | |
| 
 | |
| /*           LU decomposition with partial pivoting of B, replacing zero */
 | |
| /*           pivots by EPS3. */
 | |
| 
 | |
| /*           The imaginary part of the (i,j)-th element of U is stored in */
 | |
| /*           B(j+1,i). */
 | |
| 
 | |
| 	    b[b_dim1 + 2] = -(*wi);
 | |
| 	    i__1 = *n;
 | |
| 	    for (i__ = 2; i__ <= i__1; ++i__) {
 | |
| 		b[i__ + 1 + b_dim1] = 0.f;
 | |
| /* L140: */
 | |
| 	    }
 | |
| 
 | |
| 	    i__1 = *n - 1;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 		absbii = slapy2_(&b[i__ + i__ * b_dim1], &b[i__ + 1 + i__ * 
 | |
| 			b_dim1]);
 | |
| 		ei = h__[i__ + 1 + i__ * h_dim1];
 | |
| 		if (absbii < abs(ei)) {
 | |
| 
 | |
| /*                 Interchange rows and eliminate. */
 | |
| 
 | |
| 		    xr = b[i__ + i__ * b_dim1] / ei;
 | |
| 		    xi = b[i__ + 1 + i__ * b_dim1] / ei;
 | |
| 		    b[i__ + i__ * b_dim1] = ei;
 | |
| 		    b[i__ + 1 + i__ * b_dim1] = 0.f;
 | |
| 		    i__2 = *n;
 | |
| 		    for (j = i__ + 1; j <= i__2; ++j) {
 | |
| 			temp = b[i__ + 1 + j * b_dim1];
 | |
| 			b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - xr * 
 | |
| 				temp;
 | |
| 			b[j + 1 + (i__ + 1) * b_dim1] = b[j + 1 + i__ * 
 | |
| 				b_dim1] - xi * temp;
 | |
| 			b[i__ + j * b_dim1] = temp;
 | |
| 			b[j + 1 + i__ * b_dim1] = 0.f;
 | |
| /* L150: */
 | |
| 		    }
 | |
| 		    b[i__ + 2 + i__ * b_dim1] = -(*wi);
 | |
| 		    b[i__ + 1 + (i__ + 1) * b_dim1] -= xi * *wi;
 | |
| 		    b[i__ + 2 + (i__ + 1) * b_dim1] += xr * *wi;
 | |
| 		} else {
 | |
| 
 | |
| /*                 Eliminate without interchanging rows. */
 | |
| 
 | |
| 		    if (absbii == 0.f) {
 | |
| 			b[i__ + i__ * b_dim1] = *eps3;
 | |
| 			b[i__ + 1 + i__ * b_dim1] = 0.f;
 | |
| 			absbii = *eps3;
 | |
| 		    }
 | |
| 		    ei = ei / absbii / absbii;
 | |
| 		    xr = b[i__ + i__ * b_dim1] * ei;
 | |
| 		    xi = -b[i__ + 1 + i__ * b_dim1] * ei;
 | |
| 		    i__2 = *n;
 | |
| 		    for (j = i__ + 1; j <= i__2; ++j) {
 | |
| 			b[i__ + 1 + j * b_dim1] = b[i__ + 1 + j * b_dim1] - 
 | |
| 				xr * b[i__ + j * b_dim1] + xi * b[j + 1 + i__ 
 | |
| 				* b_dim1];
 | |
| 			b[j + 1 + (i__ + 1) * b_dim1] = -xr * b[j + 1 + i__ * 
 | |
| 				b_dim1] - xi * b[i__ + j * b_dim1];
 | |
| /* L160: */
 | |
| 		    }
 | |
| 		    b[i__ + 2 + (i__ + 1) * b_dim1] -= *wi;
 | |
| 		}
 | |
| 
 | |
| /*              Compute 1-norm of offdiagonal elements of i-th row. */
 | |
| 
 | |
| 		i__2 = *n - i__;
 | |
| 		i__3 = *n - i__;
 | |
| 		work[i__] = sasum_(&i__2, &b[i__ + (i__ + 1) * b_dim1], ldb) 
 | |
| 			+ sasum_(&i__3, &b[i__ + 2 + i__ * b_dim1], &c__1);
 | |
| /* L170: */
 | |
| 	    }
 | |
| 	    if (b[*n + *n * b_dim1] == 0.f && b[*n + 1 + *n * b_dim1] == 0.f) 
 | |
| 		    {
 | |
| 		b[*n + *n * b_dim1] = *eps3;
 | |
| 	    }
 | |
| 	    work[*n] = 0.f;
 | |
| 
 | |
| 	    i1 = *n;
 | |
| 	    i2 = 1;
 | |
| 	    i3 = -1;
 | |
| 	} else {
 | |
| 
 | |
| /*           UL decomposition with partial pivoting of conjg(B), */
 | |
| /*           replacing zero pivots by EPS3. */
 | |
| 
 | |
| /*           The imaginary part of the (i,j)-th element of U is stored in */
 | |
| /*           B(j+1,i). */
 | |
| 
 | |
| 	    b[*n + 1 + *n * b_dim1] = *wi;
 | |
| 	    i__1 = *n - 1;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		b[*n + 1 + j * b_dim1] = 0.f;
 | |
| /* L180: */
 | |
| 	    }
 | |
| 
 | |
| 	    for (j = *n; j >= 2; --j) {
 | |
| 		ej = h__[j + (j - 1) * h_dim1];
 | |
| 		absbjj = slapy2_(&b[j + j * b_dim1], &b[j + 1 + j * b_dim1]);
 | |
| 		if (absbjj < abs(ej)) {
 | |
| 
 | |
| /*                 Interchange columns and eliminate */
 | |
| 
 | |
| 		    xr = b[j + j * b_dim1] / ej;
 | |
| 		    xi = b[j + 1 + j * b_dim1] / ej;
 | |
| 		    b[j + j * b_dim1] = ej;
 | |
| 		    b[j + 1 + j * b_dim1] = 0.f;
 | |
| 		    i__1 = j - 1;
 | |
| 		    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			temp = b[i__ + (j - 1) * b_dim1];
 | |
| 			b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - xr *
 | |
| 				 temp;
 | |
| 			b[j + i__ * b_dim1] = b[j + 1 + i__ * b_dim1] - xi * 
 | |
| 				temp;
 | |
| 			b[i__ + j * b_dim1] = temp;
 | |
| 			b[j + 1 + i__ * b_dim1] = 0.f;
 | |
| /* L190: */
 | |
| 		    }
 | |
| 		    b[j + 1 + (j - 1) * b_dim1] = *wi;
 | |
| 		    b[j - 1 + (j - 1) * b_dim1] += xi * *wi;
 | |
| 		    b[j + (j - 1) * b_dim1] -= xr * *wi;
 | |
| 		} else {
 | |
| 
 | |
| /*                 Eliminate without interchange. */
 | |
| 
 | |
| 		    if (absbjj == 0.f) {
 | |
| 			b[j + j * b_dim1] = *eps3;
 | |
| 			b[j + 1 + j * b_dim1] = 0.f;
 | |
| 			absbjj = *eps3;
 | |
| 		    }
 | |
| 		    ej = ej / absbjj / absbjj;
 | |
| 		    xr = b[j + j * b_dim1] * ej;
 | |
| 		    xi = -b[j + 1 + j * b_dim1] * ej;
 | |
| 		    i__1 = j - 1;
 | |
| 		    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			b[i__ + (j - 1) * b_dim1] = b[i__ + (j - 1) * b_dim1] 
 | |
| 				- xr * b[i__ + j * b_dim1] + xi * b[j + 1 + 
 | |
| 				i__ * b_dim1];
 | |
| 			b[j + i__ * b_dim1] = -xr * b[j + 1 + i__ * b_dim1] - 
 | |
| 				xi * b[i__ + j * b_dim1];
 | |
| /* L200: */
 | |
| 		    }
 | |
| 		    b[j + (j - 1) * b_dim1] += *wi;
 | |
| 		}
 | |
| 
 | |
| /*              Compute 1-norm of offdiagonal elements of j-th column. */
 | |
| 
 | |
| 		i__1 = j - 1;
 | |
| 		i__2 = j - 1;
 | |
| 		work[j] = sasum_(&i__1, &b[j * b_dim1 + 1], &c__1) + sasum_(&
 | |
| 			i__2, &b[j + 1 + b_dim1], ldb);
 | |
| /* L210: */
 | |
| 	    }
 | |
| 	    if (b[b_dim1 + 1] == 0.f && b[b_dim1 + 2] == 0.f) {
 | |
| 		b[b_dim1 + 1] = *eps3;
 | |
| 	    }
 | |
| 	    work[1] = 0.f;
 | |
| 
 | |
| 	    i1 = 1;
 | |
| 	    i2 = *n;
 | |
| 	    i3 = 1;
 | |
| 	}
 | |
| 
 | |
| 	i__1 = *n;
 | |
| 	for (its = 1; its <= i__1; ++its) {
 | |
| 	    scale = 1.f;
 | |
| 	    vmax = 1.f;
 | |
| 	    vcrit = *bignum;
 | |
| 
 | |
| /*           Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector, */
 | |
| /*             or U**T*(xr,xi) = scale*(vr,vi) for a left eigenvector, */
 | |
| /*           overwriting (xr,xi) on (vr,vi). */
 | |
| 
 | |
| 	    i__2 = i2;
 | |
| 	    i__3 = i3;
 | |
| 	    for (i__ = i1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__3) 
 | |
| 		    {
 | |
| 
 | |
| 		if (work[i__] > vcrit) {
 | |
| 		    rec = 1.f / vmax;
 | |
| 		    sscal_(n, &rec, &vr[1], &c__1);
 | |
| 		    sscal_(n, &rec, &vi[1], &c__1);
 | |
| 		    scale *= rec;
 | |
| 		    vmax = 1.f;
 | |
| 		    vcrit = *bignum;
 | |
| 		}
 | |
| 
 | |
| 		xr = vr[i__];
 | |
| 		xi = vi[i__];
 | |
| 		if (*rightv) {
 | |
| 		    i__4 = *n;
 | |
| 		    for (j = i__ + 1; j <= i__4; ++j) {
 | |
| 			xr = xr - b[i__ + j * b_dim1] * vr[j] + b[j + 1 + i__ 
 | |
| 				* b_dim1] * vi[j];
 | |
| 			xi = xi - b[i__ + j * b_dim1] * vi[j] - b[j + 1 + i__ 
 | |
| 				* b_dim1] * vr[j];
 | |
| /* L220: */
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    i__4 = i__ - 1;
 | |
| 		    for (j = 1; j <= i__4; ++j) {
 | |
| 			xr = xr - b[j + i__ * b_dim1] * vr[j] + b[i__ + 1 + j 
 | |
| 				* b_dim1] * vi[j];
 | |
| 			xi = xi - b[j + i__ * b_dim1] * vi[j] - b[i__ + 1 + j 
 | |
| 				* b_dim1] * vr[j];
 | |
| /* L230: */
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		w = (r__1 = b[i__ + i__ * b_dim1], abs(r__1)) + (r__2 = b[i__ 
 | |
| 			+ 1 + i__ * b_dim1], abs(r__2));
 | |
| 		if (w > *smlnum) {
 | |
| 		    if (w < 1.f) {
 | |
| 			w1 = abs(xr) + abs(xi);
 | |
| 			if (w1 > w * *bignum) {
 | |
| 			    rec = 1.f / w1;
 | |
| 			    sscal_(n, &rec, &vr[1], &c__1);
 | |
| 			    sscal_(n, &rec, &vi[1], &c__1);
 | |
| 			    xr = vr[i__];
 | |
| 			    xi = vi[i__];
 | |
| 			    scale *= rec;
 | |
| 			    vmax *= rec;
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| /*                 Divide by diagonal element of B. */
 | |
| 
 | |
| 		    sladiv_(&xr, &xi, &b[i__ + i__ * b_dim1], &b[i__ + 1 + 
 | |
| 			    i__ * b_dim1], &vr[i__], &vi[i__]);
 | |
| /* Computing MAX */
 | |
| 		    r__3 = (r__1 = vr[i__], abs(r__1)) + (r__2 = vi[i__], abs(
 | |
| 			    r__2));
 | |
| 		    vmax = f2cmax(r__3,vmax);
 | |
| 		    vcrit = *bignum / vmax;
 | |
| 		} else {
 | |
| 		    i__4 = *n;
 | |
| 		    for (j = 1; j <= i__4; ++j) {
 | |
| 			vr[j] = 0.f;
 | |
| 			vi[j] = 0.f;
 | |
| /* L240: */
 | |
| 		    }
 | |
| 		    vr[i__] = 1.f;
 | |
| 		    vi[i__] = 1.f;
 | |
| 		    scale = 0.f;
 | |
| 		    vmax = 1.f;
 | |
| 		    vcrit = *bignum;
 | |
| 		}
 | |
| /* L250: */
 | |
| 	    }
 | |
| 
 | |
| /*           Test for sufficient growth in the norm of (VR,VI). */
 | |
| 
 | |
| 	    vnorm = sasum_(n, &vr[1], &c__1) + sasum_(n, &vi[1], &c__1);
 | |
| 	    if (vnorm >= growto * scale) {
 | |
| 		goto L280;
 | |
| 	    }
 | |
| 
 | |
| /*           Choose a new orthogonal starting vector and try again. */
 | |
| 
 | |
| 	    y = *eps3 / (rootn + 1.f);
 | |
| 	    vr[1] = *eps3;
 | |
| 	    vi[1] = 0.f;
 | |
| 
 | |
| 	    i__3 = *n;
 | |
| 	    for (i__ = 2; i__ <= i__3; ++i__) {
 | |
| 		vr[i__] = y;
 | |
| 		vi[i__] = 0.f;
 | |
| /* L260: */
 | |
| 	    }
 | |
| 	    vr[*n - its + 1] -= *eps3 * rootn;
 | |
| /* L270: */
 | |
| 	}
 | |
| 
 | |
| /*        Failure to find eigenvector in N iterations */
 | |
| 
 | |
| 	*info = 1;
 | |
| 
 | |
| L280:
 | |
| 
 | |
| /*        Normalize eigenvector. */
 | |
| 
 | |
| 	vnorm = 0.f;
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| /* Computing MAX */
 | |
| 	    r__3 = vnorm, r__4 = (r__1 = vr[i__], abs(r__1)) + (r__2 = vi[i__]
 | |
| 		    , abs(r__2));
 | |
| 	    vnorm = f2cmax(r__3,r__4);
 | |
| /* L290: */
 | |
| 	}
 | |
| 	r__1 = 1.f / vnorm;
 | |
| 	sscal_(n, &r__1, &vr[1], &c__1);
 | |
| 	r__1 = 1.f / vnorm;
 | |
| 	sscal_(n, &r__1, &vi[1], &c__1);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| /*     End of SLAEIN */
 | |
| 
 | |
| } /* slaein_ */
 | |
| 
 |