1031 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1031 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b DLARRF finds a new relatively robust representation such that at least one of the eigenvalues i
 | |
| s relatively isolated. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download DLARRF + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrf.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrf.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrf.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE DLARRF( N, D, L, LD, CLSTRT, CLEND, */
 | |
| /*                          W, WGAP, WERR, */
 | |
| /*                          SPDIAM, CLGAPL, CLGAPR, PIVMIN, SIGMA, */
 | |
| /*                          DPLUS, LPLUS, WORK, INFO ) */
 | |
| 
 | |
| /*       INTEGER            CLSTRT, CLEND, INFO, N */
 | |
| /*       DOUBLE PRECISION   CLGAPL, CLGAPR, PIVMIN, SIGMA, SPDIAM */
 | |
| /*       DOUBLE PRECISION   D( * ), DPLUS( * ), L( * ), LD( * ), */
 | |
| /*      $          LPLUS( * ), W( * ), WGAP( * ), WERR( * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > Given the initial representation L D L^T and its cluster of close */
 | |
| /* > eigenvalues (in a relative measure), W( CLSTRT ), W( CLSTRT+1 ), ... */
 | |
| /* > W( CLEND ), DLARRF finds a new relatively robust representation */
 | |
| /* > L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the */
 | |
| /* > eigenvalues of L(+) D(+) L(+)^T is relatively isolated. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix (subblock, if the matrix split). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          The N diagonal elements of the diagonal matrix D. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] L */
 | |
| /* > \verbatim */
 | |
| /* >          L is DOUBLE PRECISION array, dimension (N-1) */
 | |
| /* >          The (N-1) subdiagonal elements of the unit bidiagonal */
 | |
| /* >          matrix L. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LD */
 | |
| /* > \verbatim */
 | |
| /* >          LD is DOUBLE PRECISION array, dimension (N-1) */
 | |
| /* >          The (N-1) elements L(i)*D(i). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] CLSTRT */
 | |
| /* > \verbatim */
 | |
| /* >          CLSTRT is INTEGER */
 | |
| /* >          The index of the first eigenvalue in the cluster. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] CLEND */
 | |
| /* > \verbatim */
 | |
| /* >          CLEND is INTEGER */
 | |
| /* >          The index of the last eigenvalue in the cluster. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] W */
 | |
| /* > \verbatim */
 | |
| /* >          W is DOUBLE PRECISION array, dimension */
 | |
| /* >          dimension is >=  (CLEND-CLSTRT+1) */
 | |
| /* >          The eigenvalue APPROXIMATIONS of L D L^T in ascending order. */
 | |
| /* >          W( CLSTRT ) through W( CLEND ) form the cluster of relatively */
 | |
| /* >          close eigenalues. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] WGAP */
 | |
| /* > \verbatim */
 | |
| /* >          WGAP is DOUBLE PRECISION array, dimension */
 | |
| /* >          dimension is >=  (CLEND-CLSTRT+1) */
 | |
| /* >          The separation from the right neighbor eigenvalue in W. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] WERR */
 | |
| /* > \verbatim */
 | |
| /* >          WERR is DOUBLE PRECISION array, dimension */
 | |
| /* >          dimension is  >=  (CLEND-CLSTRT+1) */
 | |
| /* >          WERR contain the semiwidth of the uncertainty */
 | |
| /* >          interval of the corresponding eigenvalue APPROXIMATION in W */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SPDIAM */
 | |
| /* > \verbatim */
 | |
| /* >          SPDIAM is DOUBLE PRECISION */
 | |
| /* >          estimate of the spectral diameter obtained from the */
 | |
| /* >          Gerschgorin intervals */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] CLGAPL */
 | |
| /* > \verbatim */
 | |
| /* >          CLGAPL is DOUBLE PRECISION */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] CLGAPR */
 | |
| /* > \verbatim */
 | |
| /* >          CLGAPR is DOUBLE PRECISION */
 | |
| /* >          absolute gap on each end of the cluster. */
 | |
| /* >          Set by the calling routine to protect against shifts too close */
 | |
| /* >          to eigenvalues outside the cluster. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] PIVMIN */
 | |
| /* > \verbatim */
 | |
| /* >          PIVMIN is DOUBLE PRECISION */
 | |
| /* >          The minimum pivot allowed in the Sturm sequence. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] SIGMA */
 | |
| /* > \verbatim */
 | |
| /* >          SIGMA is DOUBLE PRECISION */
 | |
| /* >          The shift used to form L(+) D(+) L(+)^T. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] DPLUS */
 | |
| /* > \verbatim */
 | |
| /* >          DPLUS is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          The N diagonal elements of the diagonal matrix D(+). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] LPLUS */
 | |
| /* > \verbatim */
 | |
| /* >          LPLUS is DOUBLE PRECISION array, dimension (N-1) */
 | |
| /* >          The first (N-1) elements of LPLUS contain the subdiagonal */
 | |
| /* >          elements of the unit bidiagonal matrix L(+). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is DOUBLE PRECISION array, dimension (2*N) */
 | |
| /* >          Workspace. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          Signals processing OK (=0) or failure (=1) */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2016 */
 | |
| 
 | |
| /* > \ingroup OTHERauxiliary */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* > Beresford Parlett, University of California, Berkeley, USA \n */
 | |
| /* > Jim Demmel, University of California, Berkeley, USA \n */
 | |
| /* > Inderjit Dhillon, University of Texas, Austin, USA \n */
 | |
| /* > Osni Marques, LBNL/NERSC, USA \n */
 | |
| /* > Christof Voemel, University of California, Berkeley, USA */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ int dlarrf_(integer *n, doublereal *d__, doublereal *l, 
 | |
| 	doublereal *ld, integer *clstrt, integer *clend, doublereal *w, 
 | |
| 	doublereal *wgap, doublereal *werr, doublereal *spdiam, doublereal *
 | |
| 	clgapl, doublereal *clgapr, doublereal *pivmin, doublereal *sigma, 
 | |
| 	doublereal *dplus, doublereal *lplus, doublereal *work, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer i__1;
 | |
|     doublereal d__1, d__2, d__3;
 | |
| 
 | |
|     /* Local variables */
 | |
|     doublereal growthbound, fail, fact, oldp;
 | |
|     integer indx;
 | |
|     doublereal prod;
 | |
|     integer ktry;
 | |
|     doublereal fail2;
 | |
|     integer i__;
 | |
|     doublereal s, avgap, ldmax, rdmax;
 | |
|     integer shift;
 | |
|     extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *);
 | |
|     doublereal bestshift, smlgrowth;
 | |
|     logical dorrr1;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     doublereal ldelta;
 | |
|     logical nofail;
 | |
|     doublereal mingap, lsigma, rdelta;
 | |
|     extern logical disnan_(doublereal *);
 | |
|     logical forcer;
 | |
|     doublereal rsigma, clwdth;
 | |
|     logical sawnan1, sawnan2;
 | |
|     doublereal eps, tmp;
 | |
|     logical tryrrr1;
 | |
|     doublereal max1, max2, rrr1, rrr2, znm2;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.1) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --work;
 | |
|     --lplus;
 | |
|     --dplus;
 | |
|     --werr;
 | |
|     --wgap;
 | |
|     --w;
 | |
|     --ld;
 | |
|     --l;
 | |
|     --d__;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n <= 0) {
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
|     fact = 2.;
 | |
|     eps = dlamch_("Precision");
 | |
|     shift = 0;
 | |
|     forcer = FALSE_;
 | |
| /*     Note that we cannot guarantee that for any of the shifts tried, */
 | |
| /*     the factorization has a small or even moderate element growth. */
 | |
| /*     There could be Ritz values at both ends of the cluster and despite */
 | |
| /*     backing off, there are examples where all factorizations tried */
 | |
| /*     (in IEEE mode, allowing zero pivots & infinities) have INFINITE */
 | |
| /*     element growth. */
 | |
| /*     For this reason, we should use PIVMIN in this subroutine so that at */
 | |
| /*     least the L D L^T factorization exists. It can be checked afterwards */
 | |
| /*     whether the element growth caused bad residuals/orthogonality. */
 | |
| /*     Decide whether the code should accept the best among all */
 | |
| /*     representations despite large element growth or signal INFO=1 */
 | |
| /*     Setting NOFAIL to .FALSE. for quick fix for bug 113 */
 | |
|     nofail = FALSE_;
 | |
| 
 | |
| /*     Compute the average gap length of the cluster */
 | |
|     clwdth = (d__1 = w[*clend] - w[*clstrt], abs(d__1)) + werr[*clend] + werr[
 | |
| 	    *clstrt];
 | |
|     avgap = clwdth / (doublereal) (*clend - *clstrt);
 | |
|     mingap = f2cmin(*clgapl,*clgapr);
 | |
| /*     Initial values for shifts to both ends of cluster */
 | |
| /* Computing MIN */
 | |
|     d__1 = w[*clstrt], d__2 = w[*clend];
 | |
|     lsigma = f2cmin(d__1,d__2) - werr[*clstrt];
 | |
| /* Computing MAX */
 | |
|     d__1 = w[*clstrt], d__2 = w[*clend];
 | |
|     rsigma = f2cmax(d__1,d__2) + werr[*clend];
 | |
| /*     Use a small fudge to make sure that we really shift to the outside */
 | |
|     lsigma -= abs(lsigma) * 4. * eps;
 | |
|     rsigma += abs(rsigma) * 4. * eps;
 | |
| /*     Compute upper bounds for how much to back off the initial shifts */
 | |
|     ldmax = mingap * .25 + *pivmin * 2.;
 | |
|     rdmax = mingap * .25 + *pivmin * 2.;
 | |
| /* Computing MAX */
 | |
|     d__1 = avgap, d__2 = wgap[*clstrt];
 | |
|     ldelta = f2cmax(d__1,d__2) / fact;
 | |
| /* Computing MAX */
 | |
|     d__1 = avgap, d__2 = wgap[*clend - 1];
 | |
|     rdelta = f2cmax(d__1,d__2) / fact;
 | |
| 
 | |
| /*     Initialize the record of the best representation found */
 | |
| 
 | |
|     s = dlamch_("S");
 | |
|     smlgrowth = 1. / s;
 | |
|     fail = (doublereal) (*n - 1) * mingap / (*spdiam * eps);
 | |
|     fail2 = (doublereal) (*n - 1) * mingap / (*spdiam * sqrt(eps));
 | |
|     bestshift = lsigma;
 | |
| 
 | |
| /*     while (KTRY <= KTRYMAX) */
 | |
|     ktry = 0;
 | |
|     growthbound = *spdiam * 8.;
 | |
| L5:
 | |
|     sawnan1 = FALSE_;
 | |
|     sawnan2 = FALSE_;
 | |
| /*     Ensure that we do not back off too much of the initial shifts */
 | |
|     ldelta = f2cmin(ldmax,ldelta);
 | |
|     rdelta = f2cmin(rdmax,rdelta);
 | |
| /*     Compute the element growth when shifting to both ends of the cluster */
 | |
| /*     accept the shift if there is no element growth at one of the two ends */
 | |
| /*     Left end */
 | |
|     s = -lsigma;
 | |
|     dplus[1] = d__[1] + s;
 | |
|     if (abs(dplus[1]) < *pivmin) {
 | |
| 	dplus[1] = -(*pivmin);
 | |
| /*        Need to set SAWNAN1 because refined RRR test should not be used */
 | |
| /*        in this case */
 | |
| 	sawnan1 = TRUE_;
 | |
|     }
 | |
|     max1 = abs(dplus[1]);
 | |
|     i__1 = *n - 1;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	lplus[i__] = ld[i__] / dplus[i__];
 | |
| 	s = s * lplus[i__] * l[i__] - lsigma;
 | |
| 	dplus[i__ + 1] = d__[i__ + 1] + s;
 | |
| 	if ((d__1 = dplus[i__ + 1], abs(d__1)) < *pivmin) {
 | |
| 	    dplus[i__ + 1] = -(*pivmin);
 | |
| /*           Need to set SAWNAN1 because refined RRR test should not be used */
 | |
| /*           in this case */
 | |
| 	    sawnan1 = TRUE_;
 | |
| 	}
 | |
| /* Computing MAX */
 | |
| 	d__2 = max1, d__3 = (d__1 = dplus[i__ + 1], abs(d__1));
 | |
| 	max1 = f2cmax(d__2,d__3);
 | |
| /* L6: */
 | |
|     }
 | |
|     sawnan1 = sawnan1 || disnan_(&max1);
 | |
|     if (forcer || max1 <= growthbound && ! sawnan1) {
 | |
| 	*sigma = lsigma;
 | |
| 	shift = 1;
 | |
| 	goto L100;
 | |
|     }
 | |
| /*     Right end */
 | |
|     s = -rsigma;
 | |
|     work[1] = d__[1] + s;
 | |
|     if (abs(work[1]) < *pivmin) {
 | |
| 	work[1] = -(*pivmin);
 | |
| /*        Need to set SAWNAN2 because refined RRR test should not be used */
 | |
| /*        in this case */
 | |
| 	sawnan2 = TRUE_;
 | |
|     }
 | |
|     max2 = abs(work[1]);
 | |
|     i__1 = *n - 1;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	work[*n + i__] = ld[i__] / work[i__];
 | |
| 	s = s * work[*n + i__] * l[i__] - rsigma;
 | |
| 	work[i__ + 1] = d__[i__ + 1] + s;
 | |
| 	if ((d__1 = work[i__ + 1], abs(d__1)) < *pivmin) {
 | |
| 	    work[i__ + 1] = -(*pivmin);
 | |
| /*           Need to set SAWNAN2 because refined RRR test should not be used */
 | |
| /*           in this case */
 | |
| 	    sawnan2 = TRUE_;
 | |
| 	}
 | |
| /* Computing MAX */
 | |
| 	d__2 = max2, d__3 = (d__1 = work[i__ + 1], abs(d__1));
 | |
| 	max2 = f2cmax(d__2,d__3);
 | |
| /* L7: */
 | |
|     }
 | |
|     sawnan2 = sawnan2 || disnan_(&max2);
 | |
|     if (forcer || max2 <= growthbound && ! sawnan2) {
 | |
| 	*sigma = rsigma;
 | |
| 	shift = 2;
 | |
| 	goto L100;
 | |
|     }
 | |
| /*     If we are at this point, both shifts led to too much element growth */
 | |
| /*     Record the better of the two shifts (provided it didn't lead to NaN) */
 | |
|     if (sawnan1 && sawnan2) {
 | |
| /*        both MAX1 and MAX2 are NaN */
 | |
| 	goto L50;
 | |
|     } else {
 | |
| 	if (! sawnan1) {
 | |
| 	    indx = 1;
 | |
| 	    if (max1 <= smlgrowth) {
 | |
| 		smlgrowth = max1;
 | |
| 		bestshift = lsigma;
 | |
| 	    }
 | |
| 	}
 | |
| 	if (! sawnan2) {
 | |
| 	    if (sawnan1 || max2 <= max1) {
 | |
| 		indx = 2;
 | |
| 	    }
 | |
| 	    if (max2 <= smlgrowth) {
 | |
| 		smlgrowth = max2;
 | |
| 		bestshift = rsigma;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| /*     If we are here, both the left and the right shift led to */
 | |
| /*     element growth. If the element growth is moderate, then */
 | |
| /*     we may still accept the representation, if it passes a */
 | |
| /*     refined test for RRR. This test supposes that no NaN occurred. */
 | |
| /*     Moreover, we use the refined RRR test only for isolated clusters. */
 | |
|     if (clwdth < mingap / 128. && f2cmin(max1,max2) < fail2 && ! sawnan1 && ! 
 | |
| 	    sawnan2) {
 | |
| 	dorrr1 = TRUE_;
 | |
|     } else {
 | |
| 	dorrr1 = FALSE_;
 | |
|     }
 | |
|     tryrrr1 = TRUE_;
 | |
|     if (tryrrr1 && dorrr1) {
 | |
| 	if (indx == 1) {
 | |
| 	    tmp = (d__1 = dplus[*n], abs(d__1));
 | |
| 	    znm2 = 1.;
 | |
| 	    prod = 1.;
 | |
| 	    oldp = 1.;
 | |
| 	    for (i__ = *n - 1; i__ >= 1; --i__) {
 | |
| 		if (prod <= eps) {
 | |
| 		    prod = dplus[i__ + 1] * work[*n + i__ + 1] / (dplus[i__] *
 | |
| 			     work[*n + i__]) * oldp;
 | |
| 		} else {
 | |
| 		    prod *= (d__1 = work[*n + i__], abs(d__1));
 | |
| 		}
 | |
| 		oldp = prod;
 | |
| /* Computing 2nd power */
 | |
| 		d__1 = prod;
 | |
| 		znm2 += d__1 * d__1;
 | |
| /* Computing MAX */
 | |
| 		d__2 = tmp, d__3 = (d__1 = dplus[i__] * prod, abs(d__1));
 | |
| 		tmp = f2cmax(d__2,d__3);
 | |
| /* L15: */
 | |
| 	    }
 | |
| 	    rrr1 = tmp / (*spdiam * sqrt(znm2));
 | |
| 	    if (rrr1 <= 8.) {
 | |
| 		*sigma = lsigma;
 | |
| 		shift = 1;
 | |
| 		goto L100;
 | |
| 	    }
 | |
| 	} else if (indx == 2) {
 | |
| 	    tmp = (d__1 = work[*n], abs(d__1));
 | |
| 	    znm2 = 1.;
 | |
| 	    prod = 1.;
 | |
| 	    oldp = 1.;
 | |
| 	    for (i__ = *n - 1; i__ >= 1; --i__) {
 | |
| 		if (prod <= eps) {
 | |
| 		    prod = work[i__ + 1] * lplus[i__ + 1] / (work[i__] * 
 | |
| 			    lplus[i__]) * oldp;
 | |
| 		} else {
 | |
| 		    prod *= (d__1 = lplus[i__], abs(d__1));
 | |
| 		}
 | |
| 		oldp = prod;
 | |
| /* Computing 2nd power */
 | |
| 		d__1 = prod;
 | |
| 		znm2 += d__1 * d__1;
 | |
| /* Computing MAX */
 | |
| 		d__2 = tmp, d__3 = (d__1 = work[i__] * prod, abs(d__1));
 | |
| 		tmp = f2cmax(d__2,d__3);
 | |
| /* L16: */
 | |
| 	    }
 | |
| 	    rrr2 = tmp / (*spdiam * sqrt(znm2));
 | |
| 	    if (rrr2 <= 8.) {
 | |
| 		*sigma = rsigma;
 | |
| 		shift = 2;
 | |
| 		goto L100;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| L50:
 | |
|     if (ktry < 1) {
 | |
| /*        If we are here, both shifts failed also the RRR test. */
 | |
| /*        Back off to the outside */
 | |
| /* Computing MAX */
 | |
| 	d__1 = lsigma - ldelta, d__2 = lsigma - ldmax;
 | |
| 	lsigma = f2cmax(d__1,d__2);
 | |
| /* Computing MIN */
 | |
| 	d__1 = rsigma + rdelta, d__2 = rsigma + rdmax;
 | |
| 	rsigma = f2cmin(d__1,d__2);
 | |
| 	ldelta *= 2.;
 | |
| 	rdelta *= 2.;
 | |
| 	++ktry;
 | |
| 	goto L5;
 | |
|     } else {
 | |
| /*        None of the representations investigated satisfied our */
 | |
| /*        criteria. Take the best one we found. */
 | |
| 	if (smlgrowth < fail || nofail) {
 | |
| 	    lsigma = bestshift;
 | |
| 	    rsigma = bestshift;
 | |
| 	    forcer = TRUE_;
 | |
| 	    goto L5;
 | |
| 	} else {
 | |
| 	    *info = 1;
 | |
| 	    return 0;
 | |
| 	}
 | |
|     }
 | |
| L100:
 | |
|     if (shift == 1) {
 | |
|     } else if (shift == 2) {
 | |
| /*        store new L and D back into DPLUS, LPLUS */
 | |
| 	dcopy_(n, &work[1], &c__1, &dplus[1], &c__1);
 | |
| 	i__1 = *n - 1;
 | |
| 	dcopy_(&i__1, &work[*n + 1], &c__1, &lplus[1], &c__1);
 | |
|     }
 | |
|     return 0;
 | |
| 
 | |
| /*     End of DLARRF */
 | |
| 
 | |
| } /* dlarrf_ */
 | |
| 
 |