270 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			270 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLATSQR
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK,
 | |
| *                           LWORK, INFO)
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER           INFO, LDA, M, N, MB, NB, LDT, LWORK
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX           A( LDA, * ), T( LDT, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CLATSQR computes a blocked Tall-Skinny QR factorization of
 | |
| *> a complex M-by-N matrix A for M >= N:
 | |
| *>
 | |
| *>    A = Q * ( R ),
 | |
| *>            ( 0 )
 | |
| *>
 | |
| *> where:
 | |
| *>
 | |
| *>    Q is a M-by-M orthogonal matrix, stored on exit in an implicit
 | |
| *>    form in the elements below the diagonal of the array A and in
 | |
| *>    the elements of the array T;
 | |
| *>
 | |
| *>    R is an upper-triangular N-by-N matrix, stored on exit in
 | |
| *>    the elements on and above the diagonal of the array A.
 | |
| *>
 | |
| *>    0 is a (M-N)-by-N zero matrix, and is not stored.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A. M >= N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] MB
 | |
| *> \verbatim
 | |
| *>          MB is INTEGER
 | |
| *>          The row block size to be used in the blocked QR.
 | |
| *>          MB > N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB
 | |
| *> \verbatim
 | |
| *>          NB is INTEGER
 | |
| *>          The column block size to be used in the blocked QR.
 | |
| *>          N >= NB >= 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit, the elements on and above the diagonal
 | |
| *>          of the array contain the N-by-N upper triangular matrix R;
 | |
| *>          the elements below the diagonal represent Q by the columns
 | |
| *>          of blocked V (see Further Details).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] T
 | |
| *> \verbatim
 | |
| *>          T is COMPLEX array,
 | |
| *>          dimension (LDT, N * Number_of_row_blocks)
 | |
| *>          where Number_of_row_blocks = CEIL((M-N)/(MB-N))
 | |
| *>          The blocked upper triangular block reflectors stored in compact form
 | |
| *>          as a sequence of upper triangular blocks.
 | |
| *>          See Further Details below.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T.  LDT >= NB.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>         (workspace) COMPLEX array, dimension (MAX(1,LWORK))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          The dimension of the array WORK.  LWORK >= NB*N.
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *> Tall-Skinny QR (TSQR) performs QR by a sequence of orthogonal transformations,
 | |
| *> representing Q as a product of other orthogonal matrices
 | |
| *>   Q = Q(1) * Q(2) * . . . * Q(k)
 | |
| *> where each Q(i) zeros out subdiagonal entries of a block of MB rows of A:
 | |
| *>   Q(1) zeros out the subdiagonal entries of rows 1:MB of A
 | |
| *>   Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A
 | |
| *>   Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A
 | |
| *>   . . .
 | |
| *>
 | |
| *> Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors
 | |
| *> stored under the diagonal of rows 1:MB of A, and by upper triangular
 | |
| *> block reflectors, stored in array T(1:LDT,1:N).
 | |
| *> For more information see Further Details in GEQRT.
 | |
| *>
 | |
| *> Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors
 | |
| *> stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular
 | |
| *> block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N).
 | |
| *> The last Q(k) may use fewer rows.
 | |
| *> For more information see Further Details in TPQRT.
 | |
| *>
 | |
| *> For more details of the overall algorithm, see the description of
 | |
| *> Sequential TSQR in Section 2.2 of [1].
 | |
| *>
 | |
| *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
 | |
| *>     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
 | |
| *>     SIAM J. Sci. Comput, vol. 34, no. 1, 2012
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK,
 | |
|      $                    LWORK, INFO)
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER           INFO, LDA, M, N, MB, NB, LDT, LWORK
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX           A( LDA, * ), WORK( * ), T(LDT, *)
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL    LQUERY
 | |
|       INTEGER    I, II, KK, CTR
 | |
| *     ..
 | |
| *     .. EXTERNAL FUNCTIONS ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     .. EXTERNAL SUBROUTINES ..
 | |
|       EXTERNAL    CGEQRT, CTPQRT, XERBLA
 | |
| *     .. INTRINSIC FUNCTIONS ..
 | |
|       INTRINSIC          MAX, MIN, MOD
 | |
| *     ..
 | |
| *     .. EXECUTABLE STATEMENTS ..
 | |
| *
 | |
| *     TEST THE INPUT ARGUMENTS
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
| *
 | |
|       IF( M.LT.0 ) THEN
 | |
|         INFO = -1
 | |
|       ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
 | |
|         INFO = -2
 | |
|       ELSE IF( MB.LT.1 ) THEN
 | |
|         INFO = -3
 | |
|       ELSE IF( NB.LT.1 .OR. ( NB.GT.N .AND. N.GT.0 )) THEN
 | |
|         INFO = -4
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|         INFO = -6
 | |
|       ELSE IF( LDT.LT.NB ) THEN
 | |
|         INFO = -8
 | |
|       ELSE IF( LWORK.LT.(N*NB) .AND. (.NOT.LQUERY) ) THEN
 | |
|         INFO = -10
 | |
|       END IF
 | |
|       IF( INFO.EQ.0)  THEN
 | |
|         WORK(1) = NB*N
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|         CALL XERBLA( 'CLATSQR', -INFO )
 | |
|         RETURN
 | |
|       ELSE IF (LQUERY) THEN
 | |
|        RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( MIN(M,N).EQ.0 ) THEN
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     The QR Decomposition
 | |
| *
 | |
|        IF ((MB.LE.N).OR.(MB.GE.M)) THEN
 | |
|          CALL CGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO)
 | |
|          RETURN
 | |
|        END IF
 | |
|        KK = MOD((M-N),(MB-N))
 | |
|        II=M-KK+1
 | |
| *
 | |
| *      Compute the QR factorization of the first block A(1:MB,1:N)
 | |
| *
 | |
|        CALL CGEQRT( MB, N, NB, A(1,1), LDA, T, LDT, WORK, INFO )
 | |
|        CTR = 1
 | |
| *
 | |
|        DO I = MB+1, II-MB+N ,  (MB-N)
 | |
| *
 | |
| *      Compute the QR factorization of the current block A(I:I+MB-N,1:N)
 | |
| *
 | |
|          CALL CTPQRT( MB-N, N, 0, NB, A(1,1), LDA, A( I, 1 ), LDA,
 | |
|      $                 T(1,CTR * N + 1),
 | |
|      $                  LDT, WORK, INFO )
 | |
|          CTR = CTR + 1
 | |
|        END DO
 | |
| *
 | |
| *      Compute the QR factorization of the last block A(II:M,1:N)
 | |
| *
 | |
|        IF (II.LE.M) THEN
 | |
|          CALL CTPQRT( KK, N, 0, NB, A(1,1), LDA, A( II, 1 ), LDA,
 | |
|      $                 T(1, CTR * N + 1), LDT,
 | |
|      $                  WORK, INFO )
 | |
|        END IF
 | |
| *
 | |
|       work( 1 ) = N*NB
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLATSQR
 | |
| *
 | |
|       END
 |