450 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			450 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLATM4
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLATM4( ITYPE, N, NZ1, NZ2, ISIGN, AMAGN, RCOND,
 | |
| *                          TRIANG, IDIST, ISEED, A, LDA )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            IDIST, ISIGN, ITYPE, LDA, N, NZ1, NZ2
 | |
| *       REAL               AMAGN, RCOND, TRIANG
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            ISEED( 4 )
 | |
| *       REAL               A( LDA, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLATM4 generates basic square matrices, which may later be
 | |
| *> multiplied by others in order to produce test matrices.  It is
 | |
| *> intended mainly to be used to test the generalized eigenvalue
 | |
| *> routines.
 | |
| *>
 | |
| *> It first generates the diagonal and (possibly) subdiagonal,
 | |
| *> according to the value of ITYPE, NZ1, NZ2, ISIGN, AMAGN, and RCOND.
 | |
| *> It then fills in the upper triangle with random numbers, if TRIANG is
 | |
| *> non-zero.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] ITYPE
 | |
| *> \verbatim
 | |
| *>          ITYPE is INTEGER
 | |
| *>          The "type" of matrix on the diagonal and sub-diagonal.
 | |
| *>          If ITYPE < 0, then type abs(ITYPE) is generated and then
 | |
| *>             swapped end for end (A(I,J) := A'(N-J,N-I).)  See also
 | |
| *>             the description of AMAGN and ISIGN.
 | |
| *>
 | |
| *>          Special types:
 | |
| *>          = 0:  the zero matrix.
 | |
| *>          = 1:  the identity.
 | |
| *>          = 2:  a transposed Jordan block.
 | |
| *>          = 3:  If N is odd, then a k+1 x k+1 transposed Jordan block
 | |
| *>                followed by a k x k identity block, where k=(N-1)/2.
 | |
| *>                If N is even, then k=(N-2)/2, and a zero diagonal entry
 | |
| *>                is tacked onto the end.
 | |
| *>
 | |
| *>          Diagonal types.  The diagonal consists of NZ1 zeros, then
 | |
| *>             k=N-NZ1-NZ2 nonzeros.  The subdiagonal is zero.  ITYPE
 | |
| *>             specifies the nonzero diagonal entries as follows:
 | |
| *>          = 4:  1, ..., k
 | |
| *>          = 5:  1, RCOND, ..., RCOND
 | |
| *>          = 6:  1, ..., 1, RCOND
 | |
| *>          = 7:  1, a, a^2, ..., a^(k-1)=RCOND
 | |
| *>          = 8:  1, 1-d, 1-2*d, ..., 1-(k-1)*d=RCOND
 | |
| *>          = 9:  random numbers chosen from (RCOND,1)
 | |
| *>          = 10: random numbers with distribution IDIST (see SLARND.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NZ1
 | |
| *> \verbatim
 | |
| *>          NZ1 is INTEGER
 | |
| *>          If abs(ITYPE) > 3, then the first NZ1 diagonal entries will
 | |
| *>          be zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NZ2
 | |
| *> \verbatim
 | |
| *>          NZ2 is INTEGER
 | |
| *>          If abs(ITYPE) > 3, then the last NZ2 diagonal entries will
 | |
| *>          be zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ISIGN
 | |
| *> \verbatim
 | |
| *>          ISIGN is INTEGER
 | |
| *>          = 0: The sign of the diagonal and subdiagonal entries will
 | |
| *>               be left unchanged.
 | |
| *>          = 1: The diagonal and subdiagonal entries will have their
 | |
| *>               sign changed at random.
 | |
| *>          = 2: If ITYPE is 2 or 3, then the same as ISIGN=1.
 | |
| *>               Otherwise, with probability 0.5, odd-even pairs of
 | |
| *>               diagonal entries A(2*j-1,2*j-1), A(2*j,2*j) will be
 | |
| *>               converted to a 2x2 block by pre- and post-multiplying
 | |
| *>               by distinct random orthogonal rotations.  The remaining
 | |
| *>               diagonal entries will have their sign changed at random.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AMAGN
 | |
| *> \verbatim
 | |
| *>          AMAGN is REAL
 | |
| *>          The diagonal and subdiagonal entries will be multiplied by
 | |
| *>          AMAGN.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is REAL
 | |
| *>          If abs(ITYPE) > 4, then the smallest diagonal entry will be
 | |
| *>          entry will be RCOND.  RCOND must be between 0 and 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRIANG
 | |
| *> \verbatim
 | |
| *>          TRIANG is REAL
 | |
| *>          The entries above the diagonal will be random numbers with
 | |
| *>          magnitude bounded by TRIANG (i.e., random numbers multiplied
 | |
| *>          by TRIANG.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IDIST
 | |
| *> \verbatim
 | |
| *>          IDIST is INTEGER
 | |
| *>          Specifies the type of distribution to be used to generate a
 | |
| *>          random matrix.
 | |
| *>          = 1:  UNIFORM( 0, 1 )
 | |
| *>          = 2:  UNIFORM( -1, 1 )
 | |
| *>          = 3:  NORMAL ( 0, 1 )
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] ISEED
 | |
| *> \verbatim
 | |
| *>          ISEED is INTEGER array, dimension (4)
 | |
| *>          On entry ISEED specifies the seed of the random number
 | |
| *>          generator.  The values of ISEED are changed on exit, and can
 | |
| *>          be used in the next call to SLATM4 to continue the same
 | |
| *>          random number sequence.
 | |
| *>          Note: ISEED(4) should be odd, for the random number generator
 | |
| *>          used at present.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA, N)
 | |
| *>          Array to be computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          Leading dimension of A.  Must be at least 1 and at least N.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup single_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLATM4( ITYPE, N, NZ1, NZ2, ISIGN, AMAGN, RCOND,
 | |
|      $                   TRIANG, IDIST, ISEED, A, LDA )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            IDIST, ISIGN, ITYPE, LDA, N, NZ1, NZ2
 | |
|       REAL               AMAGN, RCOND, TRIANG
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            ISEED( 4 )
 | |
|       REAL               A( LDA, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE, TWO
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
 | |
|       REAL               HALF
 | |
|       PARAMETER          ( HALF = ONE / TWO )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, IOFF, ISDB, ISDE, JC, JD, JR, K, KBEG, KEND,
 | |
|      $                   KLEN
 | |
|       REAL               ALPHA, CL, CR, SAFMIN, SL, SR, SV1, SV2, TEMP
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH, SLARAN, SLARND
 | |
|       EXTERNAL           SLAMCH, SLARAN, SLARND
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLASET
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, EXP, LOG, MAX, MIN, MOD, REAL, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( N.LE.0 )
 | |
|      $   RETURN
 | |
|       CALL SLASET( 'Full', N, N, ZERO, ZERO, A, LDA )
 | |
| *
 | |
| *     Insure a correct ISEED
 | |
| *
 | |
|       IF( MOD( ISEED( 4 ), 2 ).NE.1 )
 | |
|      $   ISEED( 4 ) = ISEED( 4 ) + 1
 | |
| *
 | |
| *     Compute diagonal and subdiagonal according to ITYPE, NZ1, NZ2,
 | |
| *     and RCOND
 | |
| *
 | |
|       IF( ITYPE.NE.0 ) THEN
 | |
|          IF( ABS( ITYPE ).GE.4 ) THEN
 | |
|             KBEG = MAX( 1, MIN( N, NZ1+1 ) )
 | |
|             KEND = MAX( KBEG, MIN( N, N-NZ2 ) )
 | |
|             KLEN = KEND + 1 - KBEG
 | |
|          ELSE
 | |
|             KBEG = 1
 | |
|             KEND = N
 | |
|             KLEN = N
 | |
|          END IF
 | |
|          ISDB = 1
 | |
|          ISDE = 0
 | |
|          GO TO ( 10, 30, 50, 80, 100, 120, 140, 160,
 | |
|      $           180, 200 )ABS( ITYPE )
 | |
| *
 | |
| *        abs(ITYPE) = 1: Identity
 | |
| *
 | |
|    10    CONTINUE
 | |
|          DO 20 JD = 1, N
 | |
|             A( JD, JD ) = ONE
 | |
|    20    CONTINUE
 | |
|          GO TO 220
 | |
| *
 | |
| *        abs(ITYPE) = 2: Transposed Jordan block
 | |
| *
 | |
|    30    CONTINUE
 | |
|          DO 40 JD = 1, N - 1
 | |
|             A( JD+1, JD ) = ONE
 | |
|    40    CONTINUE
 | |
|          ISDB = 1
 | |
|          ISDE = N - 1
 | |
|          GO TO 220
 | |
| *
 | |
| *        abs(ITYPE) = 3: Transposed Jordan block, followed by the
 | |
| *                        identity.
 | |
| *
 | |
|    50    CONTINUE
 | |
|          K = ( N-1 ) / 2
 | |
|          DO 60 JD = 1, K
 | |
|             A( JD+1, JD ) = ONE
 | |
|    60    CONTINUE
 | |
|          ISDB = 1
 | |
|          ISDE = K
 | |
|          DO 70 JD = K + 2, 2*K + 1
 | |
|             A( JD, JD ) = ONE
 | |
|    70    CONTINUE
 | |
|          GO TO 220
 | |
| *
 | |
| *        abs(ITYPE) = 4: 1,...,k
 | |
| *
 | |
|    80    CONTINUE
 | |
|          DO 90 JD = KBEG, KEND
 | |
|             A( JD, JD ) = REAL( JD-NZ1 )
 | |
|    90    CONTINUE
 | |
|          GO TO 220
 | |
| *
 | |
| *        abs(ITYPE) = 5: One large D value:
 | |
| *
 | |
|   100    CONTINUE
 | |
|          DO 110 JD = KBEG + 1, KEND
 | |
|             A( JD, JD ) = RCOND
 | |
|   110    CONTINUE
 | |
|          A( KBEG, KBEG ) = ONE
 | |
|          GO TO 220
 | |
| *
 | |
| *        abs(ITYPE) = 6: One small D value:
 | |
| *
 | |
|   120    CONTINUE
 | |
|          DO 130 JD = KBEG, KEND - 1
 | |
|             A( JD, JD ) = ONE
 | |
|   130    CONTINUE
 | |
|          A( KEND, KEND ) = RCOND
 | |
|          GO TO 220
 | |
| *
 | |
| *        abs(ITYPE) = 7: Exponentially distributed D values:
 | |
| *
 | |
|   140    CONTINUE
 | |
|          A( KBEG, KBEG ) = ONE
 | |
|          IF( KLEN.GT.1 ) THEN
 | |
|             ALPHA = RCOND**( ONE / REAL( KLEN-1 ) )
 | |
|             DO 150 I = 2, KLEN
 | |
|                A( NZ1+I, NZ1+I ) = ALPHA**REAL( I-1 )
 | |
|   150       CONTINUE
 | |
|          END IF
 | |
|          GO TO 220
 | |
| *
 | |
| *        abs(ITYPE) = 8: Arithmetically distributed D values:
 | |
| *
 | |
|   160    CONTINUE
 | |
|          A( KBEG, KBEG ) = ONE
 | |
|          IF( KLEN.GT.1 ) THEN
 | |
|             ALPHA = ( ONE-RCOND ) / REAL( KLEN-1 )
 | |
|             DO 170 I = 2, KLEN
 | |
|                A( NZ1+I, NZ1+I ) = REAL( KLEN-I )*ALPHA + RCOND
 | |
|   170       CONTINUE
 | |
|          END IF
 | |
|          GO TO 220
 | |
| *
 | |
| *        abs(ITYPE) = 9: Randomly distributed D values on ( RCOND, 1):
 | |
| *
 | |
|   180    CONTINUE
 | |
|          ALPHA = LOG( RCOND )
 | |
|          DO 190 JD = KBEG, KEND
 | |
|             A( JD, JD ) = EXP( ALPHA*SLARAN( ISEED ) )
 | |
|   190    CONTINUE
 | |
|          GO TO 220
 | |
| *
 | |
| *        abs(ITYPE) = 10: Randomly distributed D values from DIST
 | |
| *
 | |
|   200    CONTINUE
 | |
|          DO 210 JD = KBEG, KEND
 | |
|             A( JD, JD ) = SLARND( IDIST, ISEED )
 | |
|   210    CONTINUE
 | |
| *
 | |
|   220    CONTINUE
 | |
| *
 | |
| *        Scale by AMAGN
 | |
| *
 | |
|          DO 230 JD = KBEG, KEND
 | |
|             A( JD, JD ) = AMAGN*REAL( A( JD, JD ) )
 | |
|   230    CONTINUE
 | |
|          DO 240 JD = ISDB, ISDE
 | |
|             A( JD+1, JD ) = AMAGN*REAL( A( JD+1, JD ) )
 | |
|   240    CONTINUE
 | |
| *
 | |
| *        If ISIGN = 1 or 2, assign random signs to diagonal and
 | |
| *        subdiagonal
 | |
| *
 | |
|          IF( ISIGN.GT.0 ) THEN
 | |
|             DO 250 JD = KBEG, KEND
 | |
|                IF( REAL( A( JD, JD ) ).NE.ZERO ) THEN
 | |
|                   IF( SLARAN( ISEED ).GT.HALF )
 | |
|      $               A( JD, JD ) = -A( JD, JD )
 | |
|                END IF
 | |
|   250       CONTINUE
 | |
|             DO 260 JD = ISDB, ISDE
 | |
|                IF( REAL( A( JD+1, JD ) ).NE.ZERO ) THEN
 | |
|                   IF( SLARAN( ISEED ).GT.HALF )
 | |
|      $               A( JD+1, JD ) = -A( JD+1, JD )
 | |
|                END IF
 | |
|   260       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *        Reverse if ITYPE < 0
 | |
| *
 | |
|          IF( ITYPE.LT.0 ) THEN
 | |
|             DO 270 JD = KBEG, ( KBEG+KEND-1 ) / 2
 | |
|                TEMP = A( JD, JD )
 | |
|                A( JD, JD ) = A( KBEG+KEND-JD, KBEG+KEND-JD )
 | |
|                A( KBEG+KEND-JD, KBEG+KEND-JD ) = TEMP
 | |
|   270       CONTINUE
 | |
|             DO 280 JD = 1, ( N-1 ) / 2
 | |
|                TEMP = A( JD+1, JD )
 | |
|                A( JD+1, JD ) = A( N+1-JD, N-JD )
 | |
|                A( N+1-JD, N-JD ) = TEMP
 | |
|   280       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *        If ISIGN = 2, and no subdiagonals already, then apply
 | |
| *        random rotations to make 2x2 blocks.
 | |
| *
 | |
|          IF( ISIGN.EQ.2 .AND. ITYPE.NE.2 .AND. ITYPE.NE.3 ) THEN
 | |
|             SAFMIN = SLAMCH( 'S' )
 | |
|             DO 290 JD = KBEG, KEND - 1, 2
 | |
|                IF( SLARAN( ISEED ).GT.HALF ) THEN
 | |
| *
 | |
| *                 Rotation on left.
 | |
| *
 | |
|                   CL = TWO*SLARAN( ISEED ) - ONE
 | |
|                   SL = TWO*SLARAN( ISEED ) - ONE
 | |
|                   TEMP = ONE / MAX( SAFMIN, SQRT( CL**2+SL**2 ) )
 | |
|                   CL = CL*TEMP
 | |
|                   SL = SL*TEMP
 | |
| *
 | |
| *                 Rotation on right.
 | |
| *
 | |
|                   CR = TWO*SLARAN( ISEED ) - ONE
 | |
|                   SR = TWO*SLARAN( ISEED ) - ONE
 | |
|                   TEMP = ONE / MAX( SAFMIN, SQRT( CR**2+SR**2 ) )
 | |
|                   CR = CR*TEMP
 | |
|                   SR = SR*TEMP
 | |
| *
 | |
| *                 Apply
 | |
| *
 | |
|                   SV1 = A( JD, JD )
 | |
|                   SV2 = A( JD+1, JD+1 )
 | |
|                   A( JD, JD ) = CL*CR*SV1 + SL*SR*SV2
 | |
|                   A( JD+1, JD ) = -SL*CR*SV1 + CL*SR*SV2
 | |
|                   A( JD, JD+1 ) = -CL*SR*SV1 + SL*CR*SV2
 | |
|                   A( JD+1, JD+1 ) = SL*SR*SV1 + CL*CR*SV2
 | |
|                END IF
 | |
|   290       CONTINUE
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Fill in upper triangle (except for 2x2 blocks)
 | |
| *
 | |
|       IF( TRIANG.NE.ZERO ) THEN
 | |
|          IF( ISIGN.NE.2 .OR. ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN
 | |
|             IOFF = 1
 | |
|          ELSE
 | |
|             IOFF = 2
 | |
|             DO 300 JR = 1, N - 1
 | |
|                IF( A( JR+1, JR ).EQ.ZERO )
 | |
|      $            A( JR, JR+1 ) = TRIANG*SLARND( IDIST, ISEED )
 | |
|   300       CONTINUE
 | |
|          END IF
 | |
| *
 | |
|          DO 320 JC = 2, N
 | |
|             DO 310 JR = 1, JC - IOFF
 | |
|                A( JR, JC ) = TRIANG*SLARND( IDIST, ISEED )
 | |
|   310       CONTINUE
 | |
|   320    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLATM4
 | |
| *
 | |
|       END
 |