270 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			270 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DGBTRS
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGBTRS + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgbtrs.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgbtrs.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgbtrs.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGBTRS( TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB,
 | |
| *                          INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          TRANS
 | |
| *       INTEGER            INFO, KL, KU, LDAB, LDB, N, NRHS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       DOUBLE PRECISION   AB( LDAB, * ), B( LDB, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGBTRS solves a system of linear equations
 | |
| *>    A * X = B  or  A**T * X = B
 | |
| *> with a general band matrix A using the LU factorization computed
 | |
| *> by DGBTRF.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          Specifies the form of the system of equations.
 | |
| *>          = 'N':  A * X = B  (No transpose)
 | |
| *>          = 'T':  A**T* X = B  (Transpose)
 | |
| *>          = 'C':  A**T* X = B  (Conjugate transpose = Transpose)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KL
 | |
| *> \verbatim
 | |
| *>          KL is INTEGER
 | |
| *>          The number of subdiagonals within the band of A.  KL >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KU
 | |
| *> \verbatim
 | |
| *>          KU is INTEGER
 | |
| *>          The number of superdiagonals within the band of A.  KU >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrix B.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AB
 | |
| *> \verbatim
 | |
| *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
 | |
| *>          Details of the LU factorization of the band matrix A, as
 | |
| *>          computed by DGBTRF.  U is stored as an upper triangular band
 | |
| *>          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
 | |
| *>          the multipliers used during the factorization are stored in
 | |
| *>          rows KL+KU+2 to 2*KL+KU+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          The pivot indices; for 1 <= i <= N, row i of the matrix was
 | |
| *>          interchanged with row IPIV(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | |
| *>          On entry, the right hand side matrix B.
 | |
| *>          On exit, the solution matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup doubleGBcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGBTRS( TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB,
 | |
|      $                   INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          TRANS
 | |
|       INTEGER            INFO, KL, KU, LDAB, LDB, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       DOUBLE PRECISION   AB( LDAB, * ), B( LDB, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE
 | |
|       PARAMETER          ( ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LNOTI, NOTRAN
 | |
|       INTEGER            I, J, KD, L, LM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DGEMV, DGER, DSWAP, DTBSV, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       NOTRAN = LSAME( TRANS, 'N' )
 | |
|       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
 | |
|      $    LSAME( TRANS, 'C' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( KL.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( KU.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDAB.LT.( 2*KL+KU+1 ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -10
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DGBTRS', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 .OR. NRHS.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       KD = KU + KL + 1
 | |
|       LNOTI = KL.GT.0
 | |
| *
 | |
|       IF( NOTRAN ) THEN
 | |
| *
 | |
| *        Solve  A*X = B.
 | |
| *
 | |
| *        Solve L*X = B, overwriting B with X.
 | |
| *
 | |
| *        L is represented as a product of permutations and unit lower
 | |
| *        triangular matrices L = P(1) * L(1) * ... * P(n-1) * L(n-1),
 | |
| *        where each transformation L(i) is a rank-one modification of
 | |
| *        the identity matrix.
 | |
| *
 | |
|          IF( LNOTI ) THEN
 | |
|             DO 10 J = 1, N - 1
 | |
|                LM = MIN( KL, N-J )
 | |
|                L = IPIV( J )
 | |
|                IF( L.NE.J )
 | |
|      $            CALL DSWAP( NRHS, B( L, 1 ), LDB, B( J, 1 ), LDB )
 | |
|                CALL DGER( LM, NRHS, -ONE, AB( KD+1, J ), 1, B( J, 1 ),
 | |
|      $                    LDB, B( J+1, 1 ), LDB )
 | |
|    10       CONTINUE
 | |
|          END IF
 | |
| *
 | |
|          DO 20 I = 1, NRHS
 | |
| *
 | |
| *           Solve U*X = B, overwriting B with X.
 | |
| *
 | |
|             CALL DTBSV( 'Upper', 'No transpose', 'Non-unit', N, KL+KU,
 | |
|      $                  AB, LDAB, B( 1, I ), 1 )
 | |
|    20    CONTINUE
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Solve A**T*X = B.
 | |
| *
 | |
|          DO 30 I = 1, NRHS
 | |
| *
 | |
| *           Solve U**T*X = B, overwriting B with X.
 | |
| *
 | |
|             CALL DTBSV( 'Upper', 'Transpose', 'Non-unit', N, KL+KU, AB,
 | |
|      $                  LDAB, B( 1, I ), 1 )
 | |
|    30    CONTINUE
 | |
| *
 | |
| *        Solve L**T*X = B, overwriting B with X.
 | |
| *
 | |
|          IF( LNOTI ) THEN
 | |
|             DO 40 J = N - 1, 1, -1
 | |
|                LM = MIN( KL, N-J )
 | |
|                CALL DGEMV( 'Transpose', LM, NRHS, -ONE, B( J+1, 1 ),
 | |
|      $                     LDB, AB( KD+1, J ), 1, ONE, B( J, 1 ), LDB )
 | |
|                L = IPIV( J )
 | |
|                IF( L.NE.J )
 | |
|      $            CALL DSWAP( NRHS, B( L, 1 ), LDB, B( J, 1 ), LDB )
 | |
|    40       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGBTRS
 | |
| *
 | |
|       END
 |