573 lines
16 KiB
C
573 lines
16 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
|
|
|
|
|
|
/* > \brief \b SLATM2 */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* REAL FUNCTION SLATM2( M, N, I, J, KL, KU, IDIST, */
|
|
/* ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK, SPARSE ) */
|
|
|
|
|
|
/* INTEGER I, IDIST, IGRADE, IPVTNG, J, KL, KU, M, N */
|
|
/* REAL SPARSE */
|
|
|
|
|
|
/* INTEGER ISEED( 4 ), IWORK( * ) */
|
|
/* REAL D( * ), DL( * ), DR( * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > SLATM2 returns the (I,J) entry of a random matrix of dimension */
|
|
/* > (M, N) described by the other parameters. It is called by the */
|
|
/* > SLATMR routine in order to build random test matrices. No error */
|
|
/* > checking on parameters is done, because this routine is called in */
|
|
/* > a tight loop by SLATMR which has already checked the parameters. */
|
|
/* > */
|
|
/* > Use of SLATM2 differs from SLATM3 in the order in which the random */
|
|
/* > number generator is called to fill in random matrix entries. */
|
|
/* > With SLATM2, the generator is called to fill in the pivoted matrix */
|
|
/* > columnwise. With SLATM3, the generator is called to fill in the */
|
|
/* > matrix columnwise, after which it is pivoted. Thus, SLATM3 can */
|
|
/* > be used to construct random matrices which differ only in their */
|
|
/* > order of rows and/or columns. SLATM2 is used to construct band */
|
|
/* > matrices while avoiding calling the random number generator for */
|
|
/* > entries outside the band (and therefore generating random numbers */
|
|
/* > */
|
|
/* > The matrix whose (I,J) entry is returned is constructed as */
|
|
/* > follows (this routine only computes one entry): */
|
|
/* > */
|
|
/* > If I is outside (1..M) or J is outside (1..N), return zero */
|
|
/* > (this is convenient for generating matrices in band format). */
|
|
/* > */
|
|
/* > Generate a matrix A with random entries of distribution IDIST. */
|
|
/* > */
|
|
/* > Set the diagonal to D. */
|
|
/* > */
|
|
/* > Grade the matrix, if desired, from the left (by DL) and/or */
|
|
/* > from the right (by DR or DL) as specified by IGRADE. */
|
|
/* > */
|
|
/* > Permute, if desired, the rows and/or columns as specified by */
|
|
/* > IPVTNG and IWORK. */
|
|
/* > */
|
|
/* > Band the matrix to have lower bandwidth KL and upper */
|
|
/* > bandwidth KU. */
|
|
/* > */
|
|
/* > Set random entries to zero as specified by SPARSE. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] M */
|
|
/* > \verbatim */
|
|
/* > M is INTEGER */
|
|
/* > Number of rows of matrix. Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > Number of columns of matrix. Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] I */
|
|
/* > \verbatim */
|
|
/* > I is INTEGER */
|
|
/* > Row of entry to be returned. Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] J */
|
|
/* > \verbatim */
|
|
/* > J is INTEGER */
|
|
/* > Column of entry to be returned. Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] KL */
|
|
/* > \verbatim */
|
|
/* > KL is INTEGER */
|
|
/* > Lower bandwidth. Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] KU */
|
|
/* > \verbatim */
|
|
/* > KU is INTEGER */
|
|
/* > Upper bandwidth. Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] IDIST */
|
|
/* > \verbatim */
|
|
/* > IDIST is INTEGER */
|
|
/* > On entry, IDIST specifies the type of distribution to be */
|
|
/* > used to generate a random matrix . */
|
|
/* > 1 => UNIFORM( 0, 1 ) */
|
|
/* > 2 => UNIFORM( -1, 1 ) */
|
|
/* > 3 => NORMAL( 0, 1 ) */
|
|
/* > Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] ISEED */
|
|
/* > \verbatim */
|
|
/* > ISEED is INTEGER array of dimension ( 4 ) */
|
|
/* > Seed for random number generator. */
|
|
/* > Changed on exit. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] D */
|
|
/* > \verbatim */
|
|
/* > D is REAL array of dimension ( MIN( I , J ) ) */
|
|
/* > Diagonal entries of matrix. Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] IGRADE */
|
|
/* > \verbatim */
|
|
/* > IGRADE is INTEGER */
|
|
/* > Specifies grading of matrix as follows: */
|
|
/* > 0 => no grading */
|
|
/* > 1 => matrix premultiplied by diag( DL ) */
|
|
/* > 2 => matrix postmultiplied by diag( DR ) */
|
|
/* > 3 => matrix premultiplied by diag( DL ) and */
|
|
/* > postmultiplied by diag( DR ) */
|
|
/* > 4 => matrix premultiplied by diag( DL ) and */
|
|
/* > postmultiplied by inv( diag( DL ) ) */
|
|
/* > 5 => matrix premultiplied by diag( DL ) and */
|
|
/* > postmultiplied by diag( DL ) */
|
|
/* > Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] DL */
|
|
/* > \verbatim */
|
|
/* > DL is REAL array ( I or J, as appropriate ) */
|
|
/* > Left scale factors for grading matrix. Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] DR */
|
|
/* > \verbatim */
|
|
/* > DR is REAL array ( I or J, as appropriate ) */
|
|
/* > Right scale factors for grading matrix. Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] IPVTNG */
|
|
/* > \verbatim */
|
|
/* > IPVTNG is INTEGER */
|
|
/* > On entry specifies pivoting permutations as follows: */
|
|
/* > 0 => none. */
|
|
/* > 1 => row pivoting. */
|
|
/* > 2 => column pivoting. */
|
|
/* > 3 => full pivoting, i.e., on both sides. */
|
|
/* > Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] IWORK */
|
|
/* > \verbatim */
|
|
/* > IWORK is INTEGER array ( I or J, as appropriate ) */
|
|
/* > This array specifies the permutation used. The */
|
|
/* > row (or column) in position K was originally in */
|
|
/* > position IWORK( K ). */
|
|
/* > This differs from IWORK for SLATM3. Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] SPARSE */
|
|
/* > \verbatim */
|
|
/* > SPARSE is REAL between 0. and 1. */
|
|
/* > On entry specifies the sparsity of the matrix */
|
|
/* > if sparse matrix is to be generated. */
|
|
/* > SPARSE should lie between 0 and 1. */
|
|
/* > A uniform ( 0, 1 ) random number x is generated and */
|
|
/* > compared to SPARSE; if x is larger the matrix entry */
|
|
/* > is unchanged and if x is smaller the entry is set */
|
|
/* > to zero. Thus on the average a fraction SPARSE of the */
|
|
/* > entries will be set to zero. */
|
|
/* > Not modified. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date June 2016 */
|
|
|
|
/* > \ingroup real_matgen */
|
|
|
|
/* ===================================================================== */
|
|
real slatm2_(integer *m, integer *n, integer *i__, integer *j, integer *kl,
|
|
integer *ku, integer *idist, integer *iseed, real *d__, integer *
|
|
igrade, real *dl, real *dr, integer *ipvtng, integer *iwork, real *
|
|
sparse)
|
|
{
|
|
/* System generated locals */
|
|
real ret_val;
|
|
|
|
/* Local variables */
|
|
integer isub, jsub;
|
|
real temp;
|
|
extern real slaran_(integer *), slarnd_(integer *, integer *);
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* June 2016 */
|
|
|
|
|
|
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/* Check for I and J in range */
|
|
|
|
/* Parameter adjustments */
|
|
--iwork;
|
|
--dr;
|
|
--dl;
|
|
--d__;
|
|
--iseed;
|
|
|
|
/* Function Body */
|
|
if (*i__ < 1 || *i__ > *m || *j < 1 || *j > *n) {
|
|
ret_val = 0.f;
|
|
return ret_val;
|
|
}
|
|
|
|
/* Check for banding */
|
|
|
|
if (*j > *i__ + *ku || *j < *i__ - *kl) {
|
|
ret_val = 0.f;
|
|
return ret_val;
|
|
}
|
|
|
|
/* Check for sparsity */
|
|
|
|
if (*sparse > 0.f) {
|
|
if (slaran_(&iseed[1]) < *sparse) {
|
|
ret_val = 0.f;
|
|
return ret_val;
|
|
}
|
|
}
|
|
|
|
/* Compute subscripts depending on IPVTNG */
|
|
|
|
if (*ipvtng == 0) {
|
|
isub = *i__;
|
|
jsub = *j;
|
|
} else if (*ipvtng == 1) {
|
|
isub = iwork[*i__];
|
|
jsub = *j;
|
|
} else if (*ipvtng == 2) {
|
|
isub = *i__;
|
|
jsub = iwork[*j];
|
|
} else if (*ipvtng == 3) {
|
|
isub = iwork[*i__];
|
|
jsub = iwork[*j];
|
|
}
|
|
|
|
/* Compute entry and grade it according to IGRADE */
|
|
|
|
if (isub == jsub) {
|
|
temp = d__[isub];
|
|
} else {
|
|
temp = slarnd_(idist, &iseed[1]);
|
|
}
|
|
if (*igrade == 1) {
|
|
temp *= dl[isub];
|
|
} else if (*igrade == 2) {
|
|
temp *= dr[jsub];
|
|
} else if (*igrade == 3) {
|
|
temp = temp * dl[isub] * dr[jsub];
|
|
} else if (*igrade == 4 && isub != jsub) {
|
|
temp = temp * dl[isub] / dl[jsub];
|
|
} else if (*igrade == 5) {
|
|
temp = temp * dl[isub] * dl[jsub];
|
|
}
|
|
ret_val = temp;
|
|
return ret_val;
|
|
|
|
/* End of SLATM2 */
|
|
|
|
} /* slatm2_ */
|
|
|