266 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			266 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZHET01_AA
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZHET01_AA( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV,
 | 
						|
*                             C, LDC, RWORK, RESID )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            LDA, LDAFAC, LDC, N
 | 
						|
*       DOUBLE PRECISION   RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       DOUBLE PRECISION   RWORK( * )
 | 
						|
*       COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZHET01_AA reconstructs a hermitian indefinite matrix A from its
 | 
						|
*> block L*D*L' or U*D*U' factorization and computes the residual
 | 
						|
*>    norm( C - A ) / ( N * norm(A) * EPS ),
 | 
						|
*> where C is the reconstructed matrix and EPS is the machine epsilon.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the upper or lower triangular part of the
 | 
						|
*>          hermitian matrix A is stored:
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of rows and columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>          The original hermitian matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AFAC
 | 
						|
*> \verbatim
 | 
						|
*>          AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
 | 
						|
*>          The factored form of the matrix A.  AFAC contains the block
 | 
						|
*>          diagonal matrix D and the multipliers used to obtain the
 | 
						|
*>          factor L or U from the block L*D*L' or U*D*U' factorization
 | 
						|
*>          as computed by ZHETRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAFAC
 | 
						|
*> \verbatim
 | 
						|
*>          LDAFAC is INTEGER
 | 
						|
*>          The leading dimension of the array AFAC.  LDAFAC >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          The pivot indices from ZHETRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is COMPLEX*16 array, dimension (LDC,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>          The leading dimension of the array C.  LDC >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is COMPLEX*16 array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is COMPLEX*16
 | 
						|
*>          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
 | 
						|
*>          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZHET01_AA( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C,
 | 
						|
     $                      LDC, RWORK, RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            LDA, LDAFAC, LDC, N
 | 
						|
      DOUBLE PRECISION   RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      DOUBLE PRECISION   RWORK( * )
 | 
						|
      COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         CZERO, CONE
 | 
						|
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
 | 
						|
     $                     CONE  = ( 1.0D+0, 0.0D+0 ) )
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J
 | 
						|
      DOUBLE PRECISION   ANORM, EPS
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      DOUBLE PRECISION   DLAMCH, ZLANHE
 | 
						|
      EXTERNAL           LSAME, DLAMCH, ZLANHE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZLASET, ZLAVHE
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick exit if N = 0.
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Determine EPS and the norm of A.
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
      ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
 | 
						|
*
 | 
						|
*     Initialize C to the tridiagonal matrix T.
 | 
						|
*
 | 
						|
      CALL ZLASET( 'Full', N, N, CZERO, CZERO, C, LDC )
 | 
						|
      CALL ZLACPY( 'F', 1, N, AFAC( 1, 1 ), LDAFAC+1, C( 1, 1 ), LDC+1 )
 | 
						|
      IF( N.GT.1 ) THEN
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
            CALL ZLACPY( 'F', 1, N-1, AFAC( 1, 2 ), LDAFAC+1, C( 1, 2 ),
 | 
						|
     $                   LDC+1 )
 | 
						|
            CALL ZLACPY( 'F', 1, N-1, AFAC( 1, 2 ), LDAFAC+1, C( 2, 1 ),
 | 
						|
     $                   LDC+1 )
 | 
						|
            CALL ZLACGV( N-1, C( 2, 1 ), LDC+1 )
 | 
						|
         ELSE
 | 
						|
            CALL ZLACPY( 'F', 1, N-1, AFAC( 2, 1 ), LDAFAC+1, C( 1, 2 ),
 | 
						|
     $                   LDC+1 )
 | 
						|
            CALL ZLACPY( 'F', 1, N-1, AFAC( 2, 1 ), LDAFAC+1, C( 2, 1 ),
 | 
						|
     $                   LDC+1 )
 | 
						|
            CALL ZLACGV( N-1, C( 1, 2 ), LDC+1 )
 | 
						|
         ENDIF
 | 
						|
*
 | 
						|
*        Call ZTRMM to form the product U' * D (or L * D ).
 | 
						|
*
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
            CALL ZTRMM( 'Left', UPLO, 'Conjugate transpose', 'Unit',
 | 
						|
     $                  N-1, N, CONE, AFAC( 1, 2 ), LDAFAC, C( 2, 1 ),
 | 
						|
     $                  LDC )
 | 
						|
         ELSE
 | 
						|
            CALL ZTRMM( 'Left', UPLO, 'No transpose', 'Unit', N-1, N,
 | 
						|
     $                  CONE, AFAC( 2, 1 ), LDAFAC, C( 2, 1 ), LDC )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Call ZTRMM again to multiply by U (or L ).
 | 
						|
*
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
            CALL ZTRMM( 'Right', UPLO, 'No transpose', 'Unit', N, N-1,
 | 
						|
     $                  CONE, AFAC( 1, 2 ), LDAFAC, C( 1, 2 ), LDC )
 | 
						|
         ELSE
 | 
						|
            CALL ZTRMM( 'Right', UPLO, 'Conjugate transpose', 'Unit', N,
 | 
						|
     $                  N-1, CONE, AFAC( 2, 1 ), LDAFAC, C( 1, 2 ),
 | 
						|
     $                  LDC )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Apply hermitian pivots
 | 
						|
*
 | 
						|
         DO J = N, 1, -1
 | 
						|
            I = IPIV( J )
 | 
						|
            IF( I.NE.J )
 | 
						|
     $         CALL ZSWAP( N, C( J, 1 ), LDC, C( I, 1 ), LDC )
 | 
						|
         END DO
 | 
						|
         DO J = N, 1, -1
 | 
						|
            I = IPIV( J )
 | 
						|
            IF( I.NE.J )
 | 
						|
     $         CALL ZSWAP( N, C( 1, J ), 1, C( 1, I ), 1 )
 | 
						|
         END DO
 | 
						|
      ENDIF
 | 
						|
*
 | 
						|
*
 | 
						|
*     Compute the difference  C - A .
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
         DO J = 1, N
 | 
						|
            DO I = 1, J
 | 
						|
               C( I, J ) = C( I, J ) - A( I, J )
 | 
						|
            END DO
 | 
						|
         END DO
 | 
						|
      ELSE
 | 
						|
         DO J = 1, N
 | 
						|
            DO I = J, N
 | 
						|
               C( I, J ) = C( I, J ) - A( I, J )
 | 
						|
            END DO
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute norm( C - A ) / ( N * norm(A) * EPS )
 | 
						|
*
 | 
						|
      RESID = ZLANHE( '1', UPLO, N, C, LDC, RWORK )
 | 
						|
*
 | 
						|
      IF( ANORM.LE.ZERO ) THEN
 | 
						|
         IF( RESID.NE.ZERO )
 | 
						|
     $      RESID = ONE / EPS
 | 
						|
      ELSE
 | 
						|
         RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZHET01_AA
 | 
						|
*
 | 
						|
      END
 |