257 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			257 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SQRT14
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       REAL             FUNCTION SQRT14( TRANS, M, N, NRHS, A, LDA, X,
 | 
						|
*                        LDX, WORK, LWORK )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          TRANS
 | 
						|
*       INTEGER            LDA, LDX, LWORK, M, N, NRHS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), WORK( LWORK ), X( LDX, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SQRT14 checks whether X is in the row space of A or A'.  It does so
 | 
						|
*> by scaling both X and A such that their norms are in the range
 | 
						|
*> [sqrt(eps), 1/sqrt(eps)], then computing a QR factorization of [A,X]
 | 
						|
*> (if TRANS = 'T') or an LQ factorization of [A',X]' (if TRANS = 'N'),
 | 
						|
*> and returning the norm of the trailing triangle, scaled by
 | 
						|
*> MAX(M,N,NRHS)*eps.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>          = 'N':  No transpose, check for X in the row space of A
 | 
						|
*>          = 'T':  Transpose, check for X in the row space of A'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          The M-by-N matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is REAL array, dimension (LDX,NRHS)
 | 
						|
*>          If TRANS = 'N', the N-by-NRHS matrix X.
 | 
						|
*>          IF TRANS = 'T', the M-by-NRHS matrix X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDX
 | 
						|
*> \verbatim
 | 
						|
*>          LDX is INTEGER
 | 
						|
*>          The leading dimension of the array X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array dimension (LWORK)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          length of workspace array required
 | 
						|
*>          If TRANS = 'N', LWORK >= (M+NRHS)*(N+2);
 | 
						|
*>          if TRANS = 'T', LWORK >= (N+NRHS)*(M+2).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup single_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      REAL             FUNCTION SQRT14( TRANS, M, N, NRHS, A, LDA, X,
 | 
						|
     $                 LDX, WORK, LWORK )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          TRANS
 | 
						|
      INTEGER            LDA, LDX, LWORK, M, N, NRHS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), WORK( LWORK ), X( LDX, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            TPSD
 | 
						|
      INTEGER            I, INFO, J, LDWORK
 | 
						|
      REAL               ANRM, ERR, XNRM
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      REAL               RWORK( 1 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               SLAMCH, SLANGE
 | 
						|
      EXTERNAL           LSAME, SLAMCH, SLANGE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SGELQ2, SGEQR2, SLACPY, SLASCL, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      SQRT14 = ZERO
 | 
						|
      IF( LSAME( TRANS, 'N' ) ) THEN
 | 
						|
         LDWORK = M + NRHS
 | 
						|
         TPSD = .FALSE.
 | 
						|
         IF( LWORK.LT.( M+NRHS )*( N+2 ) ) THEN
 | 
						|
            CALL XERBLA( 'SQRT14', 10 )
 | 
						|
            RETURN
 | 
						|
         ELSE IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
      ELSE IF( LSAME( TRANS, 'T' ) ) THEN
 | 
						|
         LDWORK = M
 | 
						|
         TPSD = .TRUE.
 | 
						|
         IF( LWORK.LT.( N+NRHS )*( M+2 ) ) THEN
 | 
						|
            CALL XERBLA( 'SQRT14', 10 )
 | 
						|
            RETURN
 | 
						|
         ELSE IF( M.LE.0 .OR. NRHS.LE.0 ) THEN
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
         CALL XERBLA( 'SQRT14', 1 )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Copy and scale A
 | 
						|
*
 | 
						|
      CALL SLACPY( 'All', M, N, A, LDA, WORK, LDWORK )
 | 
						|
      ANRM = SLANGE( 'M', M, N, WORK, LDWORK, RWORK )
 | 
						|
      IF( ANRM.NE.ZERO )
 | 
						|
     $   CALL SLASCL( 'G', 0, 0, ANRM, ONE, M, N, WORK, LDWORK, INFO )
 | 
						|
*
 | 
						|
*     Copy X or X' into the right place and scale it
 | 
						|
*
 | 
						|
      IF( TPSD ) THEN
 | 
						|
*
 | 
						|
*        Copy X into columns n+1:n+nrhs of work
 | 
						|
*
 | 
						|
         CALL SLACPY( 'All', M, NRHS, X, LDX, WORK( N*LDWORK+1 ),
 | 
						|
     $                LDWORK )
 | 
						|
         XNRM = SLANGE( 'M', M, NRHS, WORK( N*LDWORK+1 ), LDWORK,
 | 
						|
     $          RWORK )
 | 
						|
         IF( XNRM.NE.ZERO )
 | 
						|
     $      CALL SLASCL( 'G', 0, 0, XNRM, ONE, M, NRHS,
 | 
						|
     $                   WORK( N*LDWORK+1 ), LDWORK, INFO )
 | 
						|
*
 | 
						|
*        Compute QR factorization of X
 | 
						|
*
 | 
						|
         CALL SGEQR2( M, N+NRHS, WORK, LDWORK,
 | 
						|
     $                WORK( LDWORK*( N+NRHS )+1 ),
 | 
						|
     $                WORK( LDWORK*( N+NRHS )+MIN( M, N+NRHS )+1 ),
 | 
						|
     $                INFO )
 | 
						|
*
 | 
						|
*        Compute largest entry in upper triangle of
 | 
						|
*        work(n+1:m,n+1:n+nrhs)
 | 
						|
*
 | 
						|
         ERR = ZERO
 | 
						|
         DO 20 J = N + 1, N + NRHS
 | 
						|
            DO 10 I = N + 1, MIN( M, J )
 | 
						|
               ERR = MAX( ERR, ABS( WORK( I+( J-1 )*M ) ) )
 | 
						|
   10       CONTINUE
 | 
						|
   20    CONTINUE
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Copy X' into rows m+1:m+nrhs of work
 | 
						|
*
 | 
						|
         DO 40 I = 1, N
 | 
						|
            DO 30 J = 1, NRHS
 | 
						|
               WORK( M+J+( I-1 )*LDWORK ) = X( I, J )
 | 
						|
   30       CONTINUE
 | 
						|
   40    CONTINUE
 | 
						|
*
 | 
						|
         XNRM = SLANGE( 'M', NRHS, N, WORK( M+1 ), LDWORK, RWORK )
 | 
						|
         IF( XNRM.NE.ZERO )
 | 
						|
     $      CALL SLASCL( 'G', 0, 0, XNRM, ONE, NRHS, N, WORK( M+1 ),
 | 
						|
     $                   LDWORK, INFO )
 | 
						|
*
 | 
						|
*        Compute LQ factorization of work
 | 
						|
*
 | 
						|
         CALL SGELQ2( LDWORK, N, WORK, LDWORK, WORK( LDWORK*N+1 ),
 | 
						|
     $                WORK( LDWORK*( N+1 )+1 ), INFO )
 | 
						|
*
 | 
						|
*        Compute largest entry in lower triangle in
 | 
						|
*        work(m+1:m+nrhs,m+1:n)
 | 
						|
*
 | 
						|
         ERR = ZERO
 | 
						|
         DO 60 J = M + 1, N
 | 
						|
            DO 50 I = J, LDWORK
 | 
						|
               ERR = MAX( ERR, ABS( WORK( I+( J-1 )*LDWORK ) ) )
 | 
						|
   50       CONTINUE
 | 
						|
   60    CONTINUE
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      SQRT14 = ERR / ( REAL( MAX( M, N, NRHS ) )*SLAMCH( 'Epsilon' ) )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SQRT14
 | 
						|
*
 | 
						|
      END
 |