270 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			270 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (unblocked algorithm).
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CPBTF2 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpbtf2.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpbtf2.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpbtf2.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CPBTF2( UPLO, N, KD, AB, LDAB, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, KD, LDAB, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX            AB( LDAB, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CPBTF2 computes the Cholesky factorization of a complex Hermitian
 | |
| *> positive definite band matrix A.
 | |
| *>
 | |
| *> The factorization has the form
 | |
| *>    A = U**H * U ,  if UPLO = 'U', or
 | |
| *>    A = L  * L**H,  if UPLO = 'L',
 | |
| *> where U is an upper triangular matrix, U**H is the conjugate transpose
 | |
| *> of U, and L is lower triangular.
 | |
| *>
 | |
| *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          Hermitian matrix A is stored:
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KD
 | |
| *> \verbatim
 | |
| *>          KD is INTEGER
 | |
| *>          The number of super-diagonals of the matrix A if UPLO = 'U',
 | |
| *>          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AB
 | |
| *> \verbatim
 | |
| *>          AB is COMPLEX array, dimension (LDAB,N)
 | |
| *>          On entry, the upper or lower triangle of the Hermitian band
 | |
| *>          matrix A, stored in the first KD+1 rows of the array.  The
 | |
| *>          j-th column of A is stored in the j-th column of the array AB
 | |
| *>          as follows:
 | |
| *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 | |
| *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 | |
| *>
 | |
| *>          On exit, if INFO = 0, the triangular factor U or L from the
 | |
| *>          Cholesky factorization A = U**H *U or A = L*L**H of the band
 | |
| *>          matrix A, in the same storage format as A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>          The leading dimension of the array AB.  LDAB >= KD+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -k, the k-th argument had an illegal value
 | |
| *>          > 0: if INFO = k, the leading minor of order k is not
 | |
| *>               positive definite, and the factorization could not be
 | |
| *>               completed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The band storage scheme is illustrated by the following example, when
 | |
| *>  N = 6, KD = 2, and UPLO = 'U':
 | |
| *>
 | |
| *>  On entry:                       On exit:
 | |
| *>
 | |
| *>      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46
 | |
| *>      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
 | |
| *>     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
 | |
| *>
 | |
| *>  Similarly, if UPLO = 'L' the format of A is as follows:
 | |
| *>
 | |
| *>  On entry:                       On exit:
 | |
| *>
 | |
| *>     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66
 | |
| *>     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *
 | |
| *>     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *
 | |
| *>
 | |
| *>  Array elements marked * are not used by the routine.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CPBTF2( UPLO, N, KD, AB, LDAB, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, KD, LDAB, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            AB( LDAB, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            J, KLD, KN
 | |
|       REAL               AJJ
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CHER, CLACGV, CSSCAL, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN, REAL, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( KD.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDAB.LT.KD+1 ) THEN
 | |
|          INFO = -5
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CPBTF2', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       KLD = MAX( 1, LDAB-1 )
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Compute the Cholesky factorization A = U**H * U.
 | |
| *
 | |
|          DO 10 J = 1, N
 | |
| *
 | |
| *           Compute U(J,J) and test for non-positive-definiteness.
 | |
| *
 | |
|             AJJ = REAL( AB( KD+1, J ) )
 | |
|             IF( AJJ.LE.ZERO ) THEN
 | |
|                AB( KD+1, J ) = AJJ
 | |
|                GO TO 30
 | |
|             END IF
 | |
|             AJJ = SQRT( AJJ )
 | |
|             AB( KD+1, J ) = AJJ
 | |
| *
 | |
| *           Compute elements J+1:J+KN of row J and update the
 | |
| *           trailing submatrix within the band.
 | |
| *
 | |
|             KN = MIN( KD, N-J )
 | |
|             IF( KN.GT.0 ) THEN
 | |
|                CALL CSSCAL( KN, ONE / AJJ, AB( KD, J+1 ), KLD )
 | |
|                CALL CLACGV( KN, AB( KD, J+1 ), KLD )
 | |
|                CALL CHER( 'Upper', KN, -ONE, AB( KD, J+1 ), KLD,
 | |
|      $                    AB( KD+1, J+1 ), KLD )
 | |
|                CALL CLACGV( KN, AB( KD, J+1 ), KLD )
 | |
|             END IF
 | |
|    10    CONTINUE
 | |
|       ELSE
 | |
| *
 | |
| *        Compute the Cholesky factorization A = L*L**H.
 | |
| *
 | |
|          DO 20 J = 1, N
 | |
| *
 | |
| *           Compute L(J,J) and test for non-positive-definiteness.
 | |
| *
 | |
|             AJJ = REAL( AB( 1, J ) )
 | |
|             IF( AJJ.LE.ZERO ) THEN
 | |
|                AB( 1, J ) = AJJ
 | |
|                GO TO 30
 | |
|             END IF
 | |
|             AJJ = SQRT( AJJ )
 | |
|             AB( 1, J ) = AJJ
 | |
| *
 | |
| *           Compute elements J+1:J+KN of column J and update the
 | |
| *           trailing submatrix within the band.
 | |
| *
 | |
|             KN = MIN( KD, N-J )
 | |
|             IF( KN.GT.0 ) THEN
 | |
|                CALL CSSCAL( KN, ONE / AJJ, AB( 2, J ), 1 )
 | |
|                CALL CHER( 'Lower', KN, -ONE, AB( 2, J ), 1,
 | |
|      $                    AB( 1, J+1 ), KLD )
 | |
|             END IF
 | |
|    20    CONTINUE
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
|    30 CONTINUE
 | |
|       INFO = J
 | |
|       RETURN
 | |
| *
 | |
| *     End of CPBTF2
 | |
| *
 | |
|       END
 |