251 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			251 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZRQT01
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZRQT01( M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK,
 | 
						|
*                          RWORK, RESULT )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            LDA, LWORK, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   RESULT( * ), RWORK( * )
 | 
						|
*       COMPLEX*16         A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
 | 
						|
*      $                   R( LDA, * ), TAU( * ), WORK( LWORK )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZRQT01 tests ZGERQF, which computes the RQ factorization of an m-by-n
 | 
						|
*> matrix A, and partially tests ZUNGRQ which forms the n-by-n
 | 
						|
*> orthogonal matrix Q.
 | 
						|
*>
 | 
						|
*> ZRQT01 compares R with A*Q', and checks that Q is orthogonal.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>          The m-by-n matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] AF
 | 
						|
*> \verbatim
 | 
						|
*>          AF is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>          Details of the RQ factorization of A, as returned by ZGERQF.
 | 
						|
*>          See ZGERQF for further details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>          The n-by-n orthogonal matrix Q.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] R
 | 
						|
*> \verbatim
 | 
						|
*>          R is COMPLEX*16 array, dimension (LDA,max(M,N))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the arrays A, AF, Q and L.
 | 
						|
*>          LDA >= max(M,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is COMPLEX*16 array, dimension (min(M,N))
 | 
						|
*>          The scalar factors of the elementary reflectors, as returned
 | 
						|
*>          by ZGERQF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension (LWORK)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is DOUBLE PRECISION array, dimension (max(M,N))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is DOUBLE PRECISION array, dimension (2)
 | 
						|
*>          The test ratios:
 | 
						|
*>          RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS )
 | 
						|
*>          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZRQT01( M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK,
 | 
						|
     $                   RWORK, RESULT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            LDA, LWORK, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   RESULT( * ), RWORK( * )
 | 
						|
      COMPLEX*16         A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
 | 
						|
     $                   R( LDA, * ), TAU( * ), WORK( LWORK )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
      COMPLEX*16         ROGUE
 | 
						|
      PARAMETER          ( ROGUE = ( -1.0D+10, -1.0D+10 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            INFO, MINMN
 | 
						|
      DOUBLE PRECISION   ANORM, EPS, RESID
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANSY
 | 
						|
      EXTERNAL           DLAMCH, ZLANGE, ZLANSY
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZGEMM, ZGERQF, ZHERK, ZLACPY, ZLASET, ZUNGRQ
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, DCMPLX, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Scalars in Common ..
 | 
						|
      CHARACTER*32       SRNAMT
 | 
						|
*     ..
 | 
						|
*     .. Common blocks ..
 | 
						|
      COMMON             / SRNAMC / SRNAMT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      MINMN = MIN( M, N )
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
*
 | 
						|
*     Copy the matrix A to the array AF.
 | 
						|
*
 | 
						|
      CALL ZLACPY( 'Full', M, N, A, LDA, AF, LDA )
 | 
						|
*
 | 
						|
*     Factorize the matrix A in the array AF.
 | 
						|
*
 | 
						|
      SRNAMT = 'ZGERQF'
 | 
						|
      CALL ZGERQF( M, N, AF, LDA, TAU, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*     Copy details of Q
 | 
						|
*
 | 
						|
      CALL ZLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
 | 
						|
      IF( M.LE.N ) THEN
 | 
						|
         IF( M.GT.0 .AND. M.LT.N )
 | 
						|
     $      CALL ZLACPY( 'Full', M, N-M, AF, LDA, Q( N-M+1, 1 ), LDA )
 | 
						|
         IF( M.GT.1 )
 | 
						|
     $      CALL ZLACPY( 'Lower', M-1, M-1, AF( 2, N-M+1 ), LDA,
 | 
						|
     $                   Q( N-M+2, N-M+1 ), LDA )
 | 
						|
      ELSE
 | 
						|
         IF( N.GT.1 )
 | 
						|
     $      CALL ZLACPY( 'Lower', N-1, N-1, AF( M-N+2, 1 ), LDA,
 | 
						|
     $                   Q( 2, 1 ), LDA )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Generate the n-by-n matrix Q
 | 
						|
*
 | 
						|
      SRNAMT = 'ZUNGRQ'
 | 
						|
      CALL ZUNGRQ( N, N, MINMN, Q, LDA, TAU, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*     Copy R
 | 
						|
*
 | 
						|
      CALL ZLASET( 'Full', M, N, DCMPLX( ZERO ), DCMPLX( ZERO ), R,
 | 
						|
     $             LDA )
 | 
						|
      IF( M.LE.N ) THEN
 | 
						|
         IF( M.GT.0 )
 | 
						|
     $      CALL ZLACPY( 'Upper', M, M, AF( 1, N-M+1 ), LDA,
 | 
						|
     $                   R( 1, N-M+1 ), LDA )
 | 
						|
      ELSE
 | 
						|
         IF( M.GT.N .AND. N.GT.0 )
 | 
						|
     $      CALL ZLACPY( 'Full', M-N, N, AF, LDA, R, LDA )
 | 
						|
         IF( N.GT.0 )
 | 
						|
     $      CALL ZLACPY( 'Upper', N, N, AF( M-N+1, 1 ), LDA,
 | 
						|
     $                   R( M-N+1, 1 ), LDA )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute R - A*Q'
 | 
						|
*
 | 
						|
      CALL ZGEMM( 'No transpose', 'Conjugate transpose', M, N, N,
 | 
						|
     $            DCMPLX( -ONE ), A, LDA, Q, LDA, DCMPLX( ONE ), R,
 | 
						|
     $            LDA )
 | 
						|
*
 | 
						|
*     Compute norm( R - Q'*A ) / ( N * norm(A) * EPS ) .
 | 
						|
*
 | 
						|
      ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
 | 
						|
      RESID = ZLANGE( '1', M, N, R, LDA, RWORK )
 | 
						|
      IF( ANORM.GT.ZERO ) THEN
 | 
						|
         RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, N ) ) ) / ANORM ) / EPS
 | 
						|
      ELSE
 | 
						|
         RESULT( 1 ) = ZERO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute I - Q*Q'
 | 
						|
*
 | 
						|
      CALL ZLASET( 'Full', N, N, DCMPLX( ZERO ), DCMPLX( ONE ), R, LDA )
 | 
						|
      CALL ZHERK( 'Upper', 'No transpose', N, N, -ONE, Q, LDA, ONE, R,
 | 
						|
     $            LDA )
 | 
						|
*
 | 
						|
*     Compute norm( I - Q*Q' ) / ( N * EPS ) .
 | 
						|
*
 | 
						|
      RESID = ZLANSY( '1', 'Upper', N, R, LDA, RWORK )
 | 
						|
*
 | 
						|
      RESULT( 2 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / EPS
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZRQT01
 | 
						|
*
 | 
						|
      END
 |