515 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			515 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DBDSDC
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DBDSDC + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dbdsdc.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dbdsdc.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dbdsdc.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ,
 | 
						|
*                          WORK, IWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          COMPQ, UPLO
 | 
						|
*       INTEGER            INFO, LDU, LDVT, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IQ( * ), IWORK( * )
 | 
						|
*       DOUBLE PRECISION   D( * ), E( * ), Q( * ), U( LDU, * ),
 | 
						|
*      $                   VT( LDVT, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DBDSDC computes the singular value decomposition (SVD) of a real
 | 
						|
*> N-by-N (upper or lower) bidiagonal matrix B:  B = U * S * VT,
 | 
						|
*> using a divide and conquer method, where S is a diagonal matrix
 | 
						|
*> with non-negative diagonal elements (the singular values of B), and
 | 
						|
*> U and VT are orthogonal matrices of left and right singular vectors,
 | 
						|
*> respectively. DBDSDC can be used to compute all singular values,
 | 
						|
*> and optionally, singular vectors or singular vectors in compact form.
 | 
						|
*>
 | 
						|
*> The code currently calls DLASDQ if singular values only are desired.
 | 
						|
*> However, it can be slightly modified to compute singular values
 | 
						|
*> using the divide and conquer method.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  B is upper bidiagonal.
 | 
						|
*>          = 'L':  B is lower bidiagonal.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] COMPQ
 | 
						|
*> \verbatim
 | 
						|
*>          COMPQ is CHARACTER*1
 | 
						|
*>          Specifies whether singular vectors are to be computed
 | 
						|
*>          as follows:
 | 
						|
*>          = 'N':  Compute singular values only;
 | 
						|
*>          = 'P':  Compute singular values and compute singular
 | 
						|
*>                  vectors in compact form;
 | 
						|
*>          = 'I':  Compute singular values and singular vectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix B.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          On entry, the n diagonal elements of the bidiagonal matrix B.
 | 
						|
*>          On exit, if INFO=0, the singular values of B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>          On entry, the elements of E contain the offdiagonal
 | 
						|
*>          elements of the bidiagonal matrix whose SVD is desired.
 | 
						|
*>          On exit, E has been destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] U
 | 
						|
*> \verbatim
 | 
						|
*>          U is DOUBLE PRECISION array, dimension (LDU,N)
 | 
						|
*>          If  COMPQ = 'I', then:
 | 
						|
*>             On exit, if INFO = 0, U contains the left singular vectors
 | 
						|
*>             of the bidiagonal matrix.
 | 
						|
*>          For other values of COMPQ, U is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDU
 | 
						|
*> \verbatim
 | 
						|
*>          LDU is INTEGER
 | 
						|
*>          The leading dimension of the array U.  LDU >= 1.
 | 
						|
*>          If singular vectors are desired, then LDU >= max( 1, N ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VT
 | 
						|
*> \verbatim
 | 
						|
*>          VT is DOUBLE PRECISION array, dimension (LDVT,N)
 | 
						|
*>          If  COMPQ = 'I', then:
 | 
						|
*>             On exit, if INFO = 0, VT**T contains the right singular
 | 
						|
*>             vectors of the bidiagonal matrix.
 | 
						|
*>          For other values of COMPQ, VT is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVT
 | 
						|
*> \verbatim
 | 
						|
*>          LDVT is INTEGER
 | 
						|
*>          The leading dimension of the array VT.  LDVT >= 1.
 | 
						|
*>          If singular vectors are desired, then LDVT >= max( 1, N ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is DOUBLE PRECISION array, dimension (LDQ)
 | 
						|
*>          If  COMPQ = 'P', then:
 | 
						|
*>             On exit, if INFO = 0, Q and IQ contain the left
 | 
						|
*>             and right singular vectors in a compact form,
 | 
						|
*>             requiring O(N log N) space instead of 2*N**2.
 | 
						|
*>             In particular, Q contains all the DOUBLE PRECISION data in
 | 
						|
*>             LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1))))
 | 
						|
*>             words of memory, where SMLSIZ is returned by ILAENV and
 | 
						|
*>             is equal to the maximum size of the subproblems at the
 | 
						|
*>             bottom of the computation tree (usually about 25).
 | 
						|
*>          For other values of COMPQ, Q is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IQ
 | 
						|
*> \verbatim
 | 
						|
*>          IQ is INTEGER array, dimension (LDIQ)
 | 
						|
*>          If  COMPQ = 'P', then:
 | 
						|
*>             On exit, if INFO = 0, Q and IQ contain the left
 | 
						|
*>             and right singular vectors in a compact form,
 | 
						|
*>             requiring O(N log N) space instead of 2*N**2.
 | 
						|
*>             In particular, IQ contains all INTEGER data in
 | 
						|
*>             LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1))))
 | 
						|
*>             words of memory, where SMLSIZ is returned by ILAENV and
 | 
						|
*>             is equal to the maximum size of the subproblems at the
 | 
						|
*>             bottom of the computation tree (usually about 25).
 | 
						|
*>          For other values of COMPQ, IQ is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | 
						|
*>          If COMPQ = 'N' then LWORK >= (4 * N).
 | 
						|
*>          If COMPQ = 'P' then LWORK >= (6 * N).
 | 
						|
*>          If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (8*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          > 0:  The algorithm failed to compute a singular value.
 | 
						|
*>                The update process of divide and conquer failed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup auxOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Ming Gu and Huan Ren, Computer Science Division, University of
 | 
						|
*>     California at Berkeley, USA
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ,
 | 
						|
     $                   WORK, IWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          COMPQ, UPLO
 | 
						|
      INTEGER            INFO, LDU, LDVT, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IQ( * ), IWORK( * )
 | 
						|
      DOUBLE PRECISION   D( * ), E( * ), Q( * ), U( LDU, * ),
 | 
						|
     $                   VT( LDVT, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*  Changed dimension statement in comment describing E from (N) to
 | 
						|
*  (N-1).  Sven, 17 Feb 05.
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE, TWO
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            DIFL, DIFR, GIVCOL, GIVNUM, GIVPTR, I, IC,
 | 
						|
     $                   ICOMPQ, IERR, II, IS, IU, IUPLO, IVT, J, K, KK,
 | 
						|
     $                   MLVL, NM1, NSIZE, PERM, POLES, QSTART, SMLSIZ,
 | 
						|
     $                   SMLSZP, SQRE, START, WSTART, Z
 | 
						|
      DOUBLE PRECISION   CS, EPS, ORGNRM, P, R, SN
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLANST
 | 
						|
      EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DCOPY, DLARTG, DLASCL, DLASD0, DLASDA, DLASDQ,
 | 
						|
     $                   DLASET, DLASR, DSWAP, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, INT, LOG, SIGN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
      IUPLO = 0
 | 
						|
      IF( LSAME( UPLO, 'U' ) )
 | 
						|
     $   IUPLO = 1
 | 
						|
      IF( LSAME( UPLO, 'L' ) )
 | 
						|
     $   IUPLO = 2
 | 
						|
      IF( LSAME( COMPQ, 'N' ) ) THEN
 | 
						|
         ICOMPQ = 0
 | 
						|
      ELSE IF( LSAME( COMPQ, 'P' ) ) THEN
 | 
						|
         ICOMPQ = 1
 | 
						|
      ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
 | 
						|
         ICOMPQ = 2
 | 
						|
      ELSE
 | 
						|
         ICOMPQ = -1
 | 
						|
      END IF
 | 
						|
      IF( IUPLO.EQ.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( ICOMPQ.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( ( LDU.LT.1 ) .OR. ( ( ICOMPQ.EQ.2 ) .AND. ( LDU.LT.
 | 
						|
     $         N ) ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( ( LDVT.LT.1 ) .OR. ( ( ICOMPQ.EQ.2 ) .AND. ( LDVT.LT.
 | 
						|
     $         N ) ) ) THEN
 | 
						|
         INFO = -9
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DBDSDC', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
      SMLSIZ = ILAENV( 9, 'DBDSDC', ' ', 0, 0, 0, 0 )
 | 
						|
      IF( N.EQ.1 ) THEN
 | 
						|
         IF( ICOMPQ.EQ.1 ) THEN
 | 
						|
            Q( 1 ) = SIGN( ONE, D( 1 ) )
 | 
						|
            Q( 1+SMLSIZ*N ) = ONE
 | 
						|
         ELSE IF( ICOMPQ.EQ.2 ) THEN
 | 
						|
            U( 1, 1 ) = SIGN( ONE, D( 1 ) )
 | 
						|
            VT( 1, 1 ) = ONE
 | 
						|
         END IF
 | 
						|
         D( 1 ) = ABS( D( 1 ) )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
      NM1 = N - 1
 | 
						|
*
 | 
						|
*     If matrix lower bidiagonal, rotate to be upper bidiagonal
 | 
						|
*     by applying Givens rotations on the left
 | 
						|
*
 | 
						|
      WSTART = 1
 | 
						|
      QSTART = 3
 | 
						|
      IF( ICOMPQ.EQ.1 ) THEN
 | 
						|
         CALL DCOPY( N, D, 1, Q( 1 ), 1 )
 | 
						|
         CALL DCOPY( N-1, E, 1, Q( N+1 ), 1 )
 | 
						|
      END IF
 | 
						|
      IF( IUPLO.EQ.2 ) THEN
 | 
						|
         QSTART = 5
 | 
						|
         IF( ICOMPQ .EQ. 2 ) WSTART = 2*N - 1
 | 
						|
         DO 10 I = 1, N - 1
 | 
						|
            CALL DLARTG( D( I ), E( I ), CS, SN, R )
 | 
						|
            D( I ) = R
 | 
						|
            E( I ) = SN*D( I+1 )
 | 
						|
            D( I+1 ) = CS*D( I+1 )
 | 
						|
            IF( ICOMPQ.EQ.1 ) THEN
 | 
						|
               Q( I+2*N ) = CS
 | 
						|
               Q( I+3*N ) = SN
 | 
						|
            ELSE IF( ICOMPQ.EQ.2 ) THEN
 | 
						|
               WORK( I ) = CS
 | 
						|
               WORK( NM1+I ) = -SN
 | 
						|
            END IF
 | 
						|
   10    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     If ICOMPQ = 0, use DLASDQ to compute the singular values.
 | 
						|
*
 | 
						|
      IF( ICOMPQ.EQ.0 ) THEN
 | 
						|
*        Ignore WSTART, instead using WORK( 1 ), since the two vectors
 | 
						|
*        for CS and -SN above are added only if ICOMPQ == 2,
 | 
						|
*        and adding them exceeds documented WORK size of 4*n.
 | 
						|
         CALL DLASDQ( 'U', 0, N, 0, 0, 0, D, E, VT, LDVT, U, LDU, U,
 | 
						|
     $                LDU, WORK( 1 ), INFO )
 | 
						|
         GO TO 40
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     If N is smaller than the minimum divide size SMLSIZ, then solve
 | 
						|
*     the problem with another solver.
 | 
						|
*
 | 
						|
      IF( N.LE.SMLSIZ ) THEN
 | 
						|
         IF( ICOMPQ.EQ.2 ) THEN
 | 
						|
            CALL DLASET( 'A', N, N, ZERO, ONE, U, LDU )
 | 
						|
            CALL DLASET( 'A', N, N, ZERO, ONE, VT, LDVT )
 | 
						|
            CALL DLASDQ( 'U', 0, N, N, N, 0, D, E, VT, LDVT, U, LDU, U,
 | 
						|
     $                   LDU, WORK( WSTART ), INFO )
 | 
						|
         ELSE IF( ICOMPQ.EQ.1 ) THEN
 | 
						|
            IU = 1
 | 
						|
            IVT = IU + N
 | 
						|
            CALL DLASET( 'A', N, N, ZERO, ONE, Q( IU+( QSTART-1 )*N ),
 | 
						|
     $                   N )
 | 
						|
            CALL DLASET( 'A', N, N, ZERO, ONE, Q( IVT+( QSTART-1 )*N ),
 | 
						|
     $                   N )
 | 
						|
            CALL DLASDQ( 'U', 0, N, N, N, 0, D, E,
 | 
						|
     $                   Q( IVT+( QSTART-1 )*N ), N,
 | 
						|
     $                   Q( IU+( QSTART-1 )*N ), N,
 | 
						|
     $                   Q( IU+( QSTART-1 )*N ), N, WORK( WSTART ),
 | 
						|
     $                   INFO )
 | 
						|
         END IF
 | 
						|
         GO TO 40
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ICOMPQ.EQ.2 ) THEN
 | 
						|
         CALL DLASET( 'A', N, N, ZERO, ONE, U, LDU )
 | 
						|
         CALL DLASET( 'A', N, N, ZERO, ONE, VT, LDVT )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Scale.
 | 
						|
*
 | 
						|
      ORGNRM = DLANST( 'M', N, D, E )
 | 
						|
      IF( ORGNRM.EQ.ZERO )
 | 
						|
     $   RETURN
 | 
						|
      CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, IERR )
 | 
						|
      CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, IERR )
 | 
						|
*
 | 
						|
      EPS = (0.9D+0)*DLAMCH( 'Epsilon' )
 | 
						|
*
 | 
						|
      MLVL = INT( LOG( DBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
 | 
						|
      SMLSZP = SMLSIZ + 1
 | 
						|
*
 | 
						|
      IF( ICOMPQ.EQ.1 ) THEN
 | 
						|
         IU = 1
 | 
						|
         IVT = 1 + SMLSIZ
 | 
						|
         DIFL = IVT + SMLSZP
 | 
						|
         DIFR = DIFL + MLVL
 | 
						|
         Z = DIFR + MLVL*2
 | 
						|
         IC = Z + MLVL
 | 
						|
         IS = IC + 1
 | 
						|
         POLES = IS + 1
 | 
						|
         GIVNUM = POLES + 2*MLVL
 | 
						|
*
 | 
						|
         K = 1
 | 
						|
         GIVPTR = 2
 | 
						|
         PERM = 3
 | 
						|
         GIVCOL = PERM + MLVL
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      DO 20 I = 1, N
 | 
						|
         IF( ABS( D( I ) ).LT.EPS ) THEN
 | 
						|
            D( I ) = SIGN( EPS, D( I ) )
 | 
						|
         END IF
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
      START = 1
 | 
						|
      SQRE = 0
 | 
						|
*
 | 
						|
      DO 30 I = 1, NM1
 | 
						|
         IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
 | 
						|
*
 | 
						|
*           Subproblem found. First determine its size and then
 | 
						|
*           apply divide and conquer on it.
 | 
						|
*
 | 
						|
            IF( I.LT.NM1 ) THEN
 | 
						|
*
 | 
						|
*              A subproblem with E(I) small for I < NM1.
 | 
						|
*
 | 
						|
               NSIZE = I - START + 1
 | 
						|
            ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
 | 
						|
*
 | 
						|
*              A subproblem with E(NM1) not too small but I = NM1.
 | 
						|
*
 | 
						|
               NSIZE = N - START + 1
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              A subproblem with E(NM1) small. This implies an
 | 
						|
*              1-by-1 subproblem at D(N). Solve this 1-by-1 problem
 | 
						|
*              first.
 | 
						|
*
 | 
						|
               NSIZE = I - START + 1
 | 
						|
               IF( ICOMPQ.EQ.2 ) THEN
 | 
						|
                  U( N, N ) = SIGN( ONE, D( N ) )
 | 
						|
                  VT( N, N ) = ONE
 | 
						|
               ELSE IF( ICOMPQ.EQ.1 ) THEN
 | 
						|
                  Q( N+( QSTART-1 )*N ) = SIGN( ONE, D( N ) )
 | 
						|
                  Q( N+( SMLSIZ+QSTART-1 )*N ) = ONE
 | 
						|
               END IF
 | 
						|
               D( N ) = ABS( D( N ) )
 | 
						|
            END IF
 | 
						|
            IF( ICOMPQ.EQ.2 ) THEN
 | 
						|
               CALL DLASD0( NSIZE, SQRE, D( START ), E( START ),
 | 
						|
     $                      U( START, START ), LDU, VT( START, START ),
 | 
						|
     $                      LDVT, SMLSIZ, IWORK, WORK( WSTART ), INFO )
 | 
						|
            ELSE
 | 
						|
               CALL DLASDA( ICOMPQ, SMLSIZ, NSIZE, SQRE, D( START ),
 | 
						|
     $                      E( START ), Q( START+( IU+QSTART-2 )*N ), N,
 | 
						|
     $                      Q( START+( IVT+QSTART-2 )*N ),
 | 
						|
     $                      IQ( START+K*N ), Q( START+( DIFL+QSTART-2 )*
 | 
						|
     $                      N ), Q( START+( DIFR+QSTART-2 )*N ),
 | 
						|
     $                      Q( START+( Z+QSTART-2 )*N ),
 | 
						|
     $                      Q( START+( POLES+QSTART-2 )*N ),
 | 
						|
     $                      IQ( START+GIVPTR*N ), IQ( START+GIVCOL*N ),
 | 
						|
     $                      N, IQ( START+PERM*N ),
 | 
						|
     $                      Q( START+( GIVNUM+QSTART-2 )*N ),
 | 
						|
     $                      Q( START+( IC+QSTART-2 )*N ),
 | 
						|
     $                      Q( START+( IS+QSTART-2 )*N ),
 | 
						|
     $                      WORK( WSTART ), IWORK, INFO )
 | 
						|
            END IF
 | 
						|
            IF( INFO.NE.0 ) THEN
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
            START = I + 1
 | 
						|
         END IF
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
*     Unscale
 | 
						|
*
 | 
						|
      CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, IERR )
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
*     Use Selection Sort to minimize swaps of singular vectors
 | 
						|
*
 | 
						|
      DO 60 II = 2, N
 | 
						|
         I = II - 1
 | 
						|
         KK = I
 | 
						|
         P = D( I )
 | 
						|
         DO 50 J = II, N
 | 
						|
            IF( D( J ).GT.P ) THEN
 | 
						|
               KK = J
 | 
						|
               P = D( J )
 | 
						|
            END IF
 | 
						|
   50    CONTINUE
 | 
						|
         IF( KK.NE.I ) THEN
 | 
						|
            D( KK ) = D( I )
 | 
						|
            D( I ) = P
 | 
						|
            IF( ICOMPQ.EQ.1 ) THEN
 | 
						|
               IQ( I ) = KK
 | 
						|
            ELSE IF( ICOMPQ.EQ.2 ) THEN
 | 
						|
               CALL DSWAP( N, U( 1, I ), 1, U( 1, KK ), 1 )
 | 
						|
               CALL DSWAP( N, VT( I, 1 ), LDVT, VT( KK, 1 ), LDVT )
 | 
						|
            END IF
 | 
						|
         ELSE IF( ICOMPQ.EQ.1 ) THEN
 | 
						|
            IQ( I ) = I
 | 
						|
         END IF
 | 
						|
   60 CONTINUE
 | 
						|
*
 | 
						|
*     If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO
 | 
						|
*
 | 
						|
      IF( ICOMPQ.EQ.1 ) THEN
 | 
						|
         IF( IUPLO.EQ.1 ) THEN
 | 
						|
            IQ( N ) = 1
 | 
						|
         ELSE
 | 
						|
            IQ( N ) = 0
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     If B is lower bidiagonal, update U by those Givens rotations
 | 
						|
*     which rotated B to be upper bidiagonal
 | 
						|
*
 | 
						|
      IF( ( IUPLO.EQ.2 ) .AND. ( ICOMPQ.EQ.2 ) )
 | 
						|
     $   CALL DLASR( 'L', 'V', 'B', N, N, WORK( 1 ), WORK( N ), U, LDU )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DBDSDC
 | 
						|
*
 | 
						|
      END
 |