940 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			940 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
 | 
						|
/* > \brief \b CHPGVD */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download CHPGVD + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chpgvd.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chpgvd.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chpgvd.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE CHPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, */
 | 
						|
/*                          LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          JOBZ, UPLO */
 | 
						|
/*       INTEGER            INFO, ITYPE, LDZ, LIWORK, LRWORK, LWORK, N */
 | 
						|
/*       INTEGER            IWORK( * ) */
 | 
						|
/*       REAL               RWORK( * ), W( * ) */
 | 
						|
/*       COMPLEX            AP( * ), BP( * ), WORK( * ), Z( LDZ, * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > CHPGVD computes all the eigenvalues and, optionally, the eigenvectors */
 | 
						|
/* > of a complex generalized Hermitian-definite eigenproblem, of the form */
 | 
						|
/* > A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and */
 | 
						|
/* > B are assumed to be Hermitian, stored in packed format, and B is also */
 | 
						|
/* > positive definite. */
 | 
						|
/* > If eigenvectors are desired, it uses a divide and conquer algorithm. */
 | 
						|
/* > */
 | 
						|
/* > The divide and conquer algorithm makes very mild assumptions about */
 | 
						|
/* > floating point arithmetic. It will work on machines with a guard */
 | 
						|
/* > digit in add/subtract, or on those binary machines without guard */
 | 
						|
/* > digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
 | 
						|
/* > Cray-2. It could conceivably fail on hexadecimal or decimal machines */
 | 
						|
/* > without guard digits, but we know of none. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] ITYPE */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ITYPE is INTEGER */
 | 
						|
/* >          Specifies the problem type to be solved: */
 | 
						|
/* >          = 1:  A*x = (lambda)*B*x */
 | 
						|
/* >          = 2:  A*B*x = (lambda)*x */
 | 
						|
/* >          = 3:  B*A*x = (lambda)*x */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] JOBZ */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          JOBZ is CHARACTER*1 */
 | 
						|
/* >          = 'N':  Compute eigenvalues only; */
 | 
						|
/* >          = 'V':  Compute eigenvalues and eigenvectors. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] UPLO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          UPLO is CHARACTER*1 */
 | 
						|
/* >          = 'U':  Upper triangles of A and B are stored; */
 | 
						|
/* >          = 'L':  Lower triangles of A and B are stored. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrices A and B.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] AP */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          AP is COMPLEX array, dimension (N*(N+1)/2) */
 | 
						|
/* >          On entry, the upper or lower triangle of the Hermitian matrix */
 | 
						|
/* >          A, packed columnwise in a linear array.  The j-th column of A */
 | 
						|
/* >          is stored in the array AP as follows: */
 | 
						|
/* >          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
 | 
						|
/* >          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
 | 
						|
/* > */
 | 
						|
/* >          On exit, the contents of AP are destroyed. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] BP */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          BP is COMPLEX array, dimension (N*(N+1)/2) */
 | 
						|
/* >          On entry, the upper or lower triangle of the Hermitian matrix */
 | 
						|
/* >          B, packed columnwise in a linear array.  The j-th column of B */
 | 
						|
/* >          is stored in the array BP as follows: */
 | 
						|
/* >          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; */
 | 
						|
/* >          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. */
 | 
						|
/* > */
 | 
						|
/* >          On exit, the triangular factor U or L from the Cholesky */
 | 
						|
/* >          factorization B = U**H*U or B = L*L**H, in the same storage */
 | 
						|
/* >          format as B. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] W */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          W is REAL array, dimension (N) */
 | 
						|
/* >          If INFO = 0, the eigenvalues in ascending order. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] Z */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          Z is COMPLEX array, dimension (LDZ, N) */
 | 
						|
/* >          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
 | 
						|
/* >          eigenvectors.  The eigenvectors are normalized as follows: */
 | 
						|
/* >          if ITYPE = 1 or 2, Z**H*B*Z = I; */
 | 
						|
/* >          if ITYPE = 3, Z**H*inv(B)*Z = I. */
 | 
						|
/* >          If JOBZ = 'N', then Z is not referenced. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDZ */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDZ is INTEGER */
 | 
						|
/* >          The leading dimension of the array Z.  LDZ >= 1, and if */
 | 
						|
/* >          JOBZ = 'V', LDZ >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
 | 
						|
/* >          On exit, if INFO = 0, WORK(1) returns the required LWORK. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LWORK is INTEGER */
 | 
						|
/* >          The dimension of array WORK. */
 | 
						|
/* >          If N <= 1,               LWORK >= 1. */
 | 
						|
/* >          If JOBZ = 'N' and N > 1, LWORK >= N. */
 | 
						|
/* >          If JOBZ = 'V' and N > 1, LWORK >= 2*N. */
 | 
						|
/* > */
 | 
						|
/* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | 
						|
/* >          only calculates the required sizes of the WORK, RWORK and */
 | 
						|
/* >          IWORK arrays, returns these values as the first entries of */
 | 
						|
/* >          the WORK, RWORK and IWORK arrays, and no error message */
 | 
						|
/* >          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] RWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          RWORK is REAL array, dimension (MAX(1,LRWORK)) */
 | 
						|
/* >          On exit, if INFO = 0, RWORK(1) returns the required LRWORK. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LRWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LRWORK is INTEGER */
 | 
						|
/* >          The dimension of array RWORK. */
 | 
						|
/* >          If N <= 1,               LRWORK >= 1. */
 | 
						|
/* >          If JOBZ = 'N' and N > 1, LRWORK >= N. */
 | 
						|
/* >          If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2. */
 | 
						|
/* > */
 | 
						|
/* >          If LRWORK = -1, then a workspace query is assumed; the */
 | 
						|
/* >          routine only calculates the required sizes of the WORK, RWORK */
 | 
						|
/* >          and IWORK arrays, returns these values as the first entries */
 | 
						|
/* >          of the WORK, RWORK and IWORK arrays, and no error message */
 | 
						|
/* >          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] IWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
 | 
						|
/* >          On exit, if INFO = 0, IWORK(1) returns the required LIWORK. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LIWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LIWORK is INTEGER */
 | 
						|
/* >          The dimension of array IWORK. */
 | 
						|
/* >          If JOBZ  = 'N' or N <= 1, LIWORK >= 1. */
 | 
						|
/* >          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N. */
 | 
						|
/* > */
 | 
						|
/* >          If LIWORK = -1, then a workspace query is assumed; the */
 | 
						|
/* >          routine only calculates the required sizes of the WORK, RWORK */
 | 
						|
/* >          and IWORK arrays, returns these values as the first entries */
 | 
						|
/* >          of the WORK, RWORK and IWORK arrays, and no error message */
 | 
						|
/* >          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit */
 | 
						|
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | 
						|
/* >          > 0:  CPPTRF or CHPEVD returned an error code: */
 | 
						|
/* >             <= N:  if INFO = i, CHPEVD failed to converge; */
 | 
						|
/* >                    i off-diagonal elements of an intermediate */
 | 
						|
/* >                    tridiagonal form did not convergeto zero; */
 | 
						|
/* >             > N:   if INFO = N + i, for 1 <= i <= n, then the leading */
 | 
						|
/* >                    minor of order i of B is not positive definite. */
 | 
						|
/* >                    The factorization of B could not be completed and */
 | 
						|
/* >                    no eigenvalues or eigenvectors were computed. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup complexOTHEReigen */
 | 
						|
 | 
						|
/* > \par Contributors: */
 | 
						|
/*  ================== */
 | 
						|
/* > */
 | 
						|
/* >     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void chpgvd_(integer *itype, char *jobz, char *uplo, integer *
 | 
						|
	n, complex *ap, complex *bp, real *w, complex *z__, integer *ldz, 
 | 
						|
	complex *work, integer *lwork, real *rwork, integer *lrwork, integer *
 | 
						|
	iwork, integer *liwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer z_dim1, z_offset, i__1;
 | 
						|
    real r__1, r__2;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer neig, j;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    integer lwmin;
 | 
						|
    char trans[1];
 | 
						|
    extern /* Subroutine */ void ctpmv_(char *, char *, char *, integer *, 
 | 
						|
	    complex *, complex *, integer *);
 | 
						|
    logical upper;
 | 
						|
    extern /* Subroutine */ void ctpsv_(char *, char *, char *, integer *, 
 | 
						|
	    complex *, complex *, integer *);
 | 
						|
    logical wantz;
 | 
						|
    extern /* Subroutine */ void chpevd_(char *, char *, integer *, complex *, 
 | 
						|
	    real *, complex *, integer *, complex *, integer *, real *, 
 | 
						|
	    integer *, integer *, integer *, integer *); 
 | 
						|
    extern int xerbla_(char *, integer *, ftnlen);
 | 
						|
    extern void chpgst_(integer *, char *, 
 | 
						|
	    integer *, complex *, complex *, integer *), cpptrf_(char 
 | 
						|
	    *, integer *, complex *, integer *);
 | 
						|
    integer liwmin, lrwmin;
 | 
						|
    logical lquery;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK driver routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --ap;
 | 
						|
    --bp;
 | 
						|
    --w;
 | 
						|
    z_dim1 = *ldz;
 | 
						|
    z_offset = 1 + z_dim1 * 1;
 | 
						|
    z__ -= z_offset;
 | 
						|
    --work;
 | 
						|
    --rwork;
 | 
						|
    --iwork;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    wantz = lsame_(jobz, "V");
 | 
						|
    upper = lsame_(uplo, "U");
 | 
						|
    lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;
 | 
						|
 | 
						|
    *info = 0;
 | 
						|
    if (*itype < 1 || *itype > 3) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (! (wantz || lsame_(jobz, "N"))) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (! (upper || lsame_(uplo, "L"))) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (*ldz < 1 || wantz && *ldz < *n) {
 | 
						|
	*info = -9;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info == 0) {
 | 
						|
	if (*n <= 1) {
 | 
						|
	    lwmin = 1;
 | 
						|
	    liwmin = 1;
 | 
						|
	    lrwmin = 1;
 | 
						|
	} else {
 | 
						|
	    if (wantz) {
 | 
						|
		lwmin = *n << 1;
 | 
						|
/* Computing 2nd power */
 | 
						|
		i__1 = *n;
 | 
						|
		lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1);
 | 
						|
		liwmin = *n * 5 + 3;
 | 
						|
	    } else {
 | 
						|
		lwmin = *n;
 | 
						|
		lrwmin = *n;
 | 
						|
		liwmin = 1;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
	work[1].r = (real) lwmin, work[1].i = 0.f;
 | 
						|
	rwork[1] = (real) lrwmin;
 | 
						|
	iwork[1] = liwmin;
 | 
						|
	if (*lwork < lwmin && ! lquery) {
 | 
						|
	    *info = -11;
 | 
						|
	} else if (*lrwork < lrwmin && ! lquery) {
 | 
						|
	    *info = -13;
 | 
						|
	} else if (*liwork < liwmin && ! lquery) {
 | 
						|
	    *info = -15;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("CHPGVD", &i__1, (ftnlen)6);
 | 
						|
	return;
 | 
						|
    } else if (lquery) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n == 0) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Form a Cholesky factorization of B. */
 | 
						|
 | 
						|
    cpptrf_(uplo, n, &bp[1], info);
 | 
						|
    if (*info != 0) {
 | 
						|
	*info = *n + *info;
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Transform problem to standard eigenvalue problem and solve. */
 | 
						|
 | 
						|
    chpgst_(itype, uplo, n, &ap[1], &bp[1], info);
 | 
						|
    chpevd_(jobz, uplo, n, &ap[1], &w[1], &z__[z_offset], ldz, &work[1], 
 | 
						|
	    lwork, &rwork[1], lrwork, &iwork[1], liwork, info);
 | 
						|
/* Computing MAX */
 | 
						|
    r__1 = (real) lwmin, r__2 = work[1].r;
 | 
						|
    lwmin = f2cmax(r__1,r__2);
 | 
						|
/* Computing MAX */
 | 
						|
    r__1 = (real) lrwmin;
 | 
						|
    lrwmin = f2cmax(r__1,rwork[1]);
 | 
						|
/* Computing MAX */
 | 
						|
    r__1 = (real) liwmin, r__2 = (real) iwork[1];
 | 
						|
    liwmin = f2cmax(r__1,r__2);
 | 
						|
 | 
						|
    if (wantz) {
 | 
						|
 | 
						|
/*        Backtransform eigenvectors to the original problem. */
 | 
						|
 | 
						|
	neig = *n;
 | 
						|
	if (*info > 0) {
 | 
						|
	    neig = *info - 1;
 | 
						|
	}
 | 
						|
	if (*itype == 1 || *itype == 2) {
 | 
						|
 | 
						|
/*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
 | 
						|
/*           backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y */
 | 
						|
 | 
						|
	    if (upper) {
 | 
						|
		*(unsigned char *)trans = 'N';
 | 
						|
	    } else {
 | 
						|
		*(unsigned char *)trans = 'C';
 | 
						|
	    }
 | 
						|
 | 
						|
	    i__1 = neig;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		ctpsv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 
 | 
						|
			1], &c__1);
 | 
						|
/* L10: */
 | 
						|
	    }
 | 
						|
 | 
						|
	} else if (*itype == 3) {
 | 
						|
 | 
						|
/*           For B*A*x=(lambda)*x; */
 | 
						|
/*           backtransform eigenvectors: x = L*y or U**H *y */
 | 
						|
 | 
						|
	    if (upper) {
 | 
						|
		*(unsigned char *)trans = 'C';
 | 
						|
	    } else {
 | 
						|
		*(unsigned char *)trans = 'N';
 | 
						|
	    }
 | 
						|
 | 
						|
	    i__1 = neig;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		ctpmv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 
 | 
						|
			1], &c__1);
 | 
						|
/* L20: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    work[1].r = (real) lwmin, work[1].i = 0.f;
 | 
						|
    rwork[1] = (real) lrwmin;
 | 
						|
    iwork[1] = liwmin;
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of CHPGVD */
 | 
						|
 | 
						|
} /* chpgvd_ */
 | 
						|
 |