529 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			529 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> ZGEGS computes the eigenvalues, Schur form, and, optionally, the left and or/right Schur vectors of a complex matrix pair (A,B)</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZGEGS + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgegs.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgegs.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgegs.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA,
 | 
						|
*                         VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK,
 | 
						|
*                         INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBVSL, JOBVSR
 | 
						|
*       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   RWORK( * )
 | 
						|
*       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
 | 
						|
*      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
 | 
						|
*      $                   WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> This routine is deprecated and has been replaced by routine ZGGES.
 | 
						|
*>
 | 
						|
*> ZGEGS computes the eigenvalues, Schur form, and, optionally, the
 | 
						|
*> left and or/right Schur vectors of a complex matrix pair (A,B).
 | 
						|
*> Given two square matrices A and B, the generalized Schur
 | 
						|
*> factorization has the form
 | 
						|
*>
 | 
						|
*>    A = Q*S*Z**H,  B = Q*T*Z**H
 | 
						|
*>
 | 
						|
*> where Q and Z are unitary matrices and S and T are upper triangular.
 | 
						|
*> The columns of Q are the left Schur vectors
 | 
						|
*> and the columns of Z are the right Schur vectors.
 | 
						|
*>
 | 
						|
*> If only the eigenvalues of (A,B) are needed, the driver routine
 | 
						|
*> ZGEGV should be used instead.  See ZGEGV for a description of the
 | 
						|
*> eigenvalues of the generalized nonsymmetric eigenvalue problem
 | 
						|
*> (GNEP).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOBVSL
 | 
						|
*> \verbatim
 | 
						|
*>          JOBVSL is CHARACTER*1
 | 
						|
*>          = 'N':  do not compute the left Schur vectors;
 | 
						|
*>          = 'V':  compute the left Schur vectors (returned in VSL).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] JOBVSR
 | 
						|
*> \verbatim
 | 
						|
*>          JOBVSR is CHARACTER*1
 | 
						|
*>          = 'N':  do not compute the right Schur vectors;
 | 
						|
*>          = 'V':  compute the right Schur vectors (returned in VSR).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA, N)
 | 
						|
*>          On entry, the matrix A.
 | 
						|
*>          On exit, the upper triangular matrix S from the generalized
 | 
						|
*>          Schur factorization.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX*16 array, dimension (LDB, N)
 | 
						|
*>          On entry, the matrix B.
 | 
						|
*>          On exit, the upper triangular matrix T from the generalized
 | 
						|
*>          Schur factorization.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is COMPLEX*16 array, dimension (N)
 | 
						|
*>          The complex scalars alpha that define the eigenvalues of
 | 
						|
*>          GNEP.  ALPHA(j) = S(j,j), the diagonal element of the Schur
 | 
						|
*>          form of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is COMPLEX*16 array, dimension (N)
 | 
						|
*>          The non-negative real scalars beta that define the
 | 
						|
*>          eigenvalues of GNEP.  BETA(j) = T(j,j), the diagonal element
 | 
						|
*>          of the triangular factor T.
 | 
						|
*>
 | 
						|
*>          Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
 | 
						|
*>          represent the j-th eigenvalue of the matrix pair (A,B), in
 | 
						|
*>          one of the forms lambda = alpha/beta or mu = beta/alpha.
 | 
						|
*>          Since either lambda or mu may overflow, they should not,
 | 
						|
*>          in general, be computed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VSL
 | 
						|
*> \verbatim
 | 
						|
*>          VSL is COMPLEX*16 array, dimension (LDVSL,N)
 | 
						|
*>          If JOBVSL = 'V', the matrix of left Schur vectors Q.
 | 
						|
*>          Not referenced if JOBVSL = 'N'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVSL
 | 
						|
*> \verbatim
 | 
						|
*>          LDVSL is INTEGER
 | 
						|
*>          The leading dimension of the matrix VSL. LDVSL >= 1, and
 | 
						|
*>          if JOBVSL = 'V', LDVSL >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VSR
 | 
						|
*> \verbatim
 | 
						|
*>          VSR is COMPLEX*16 array, dimension (LDVSR,N)
 | 
						|
*>          If JOBVSR = 'V', the matrix of right Schur vectors Z.
 | 
						|
*>          Not referenced if JOBVSR = 'N'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVSR
 | 
						|
*> \verbatim
 | 
						|
*>          LDVSR is INTEGER
 | 
						|
*>          The leading dimension of the matrix VSR. LDVSR >= 1, and
 | 
						|
*>          if JOBVSR = 'V', LDVSR >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.  LWORK >= max(1,2*N).
 | 
						|
*>          For good performance, LWORK must generally be larger.
 | 
						|
*>          To compute the optimal value of LWORK, call ILAENV to get
 | 
						|
*>          blocksizes (for ZGEQRF, ZUNMQR, and CUNGQR.)  Then compute:
 | 
						|
*>          NB  -- MAX of the blocksizes for ZGEQRF, ZUNMQR, and CUNGQR;
 | 
						|
*>          the optimal LWORK is N*(NB+1).
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is DOUBLE PRECISION array, dimension (3*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          =1,...,N:
 | 
						|
*>                The QZ iteration failed.  (A,B) are not in Schur
 | 
						|
*>                form, but ALPHA(j) and BETA(j) should be correct for
 | 
						|
*>                j=INFO+1,...,N.
 | 
						|
*>          > N:  errors that usually indicate LAPACK problems:
 | 
						|
*>                =N+1: error return from ZGGBAL
 | 
						|
*>                =N+2: error return from ZGEQRF
 | 
						|
*>                =N+3: error return from ZUNMQR
 | 
						|
*>                =N+4: error return from ZUNGQR
 | 
						|
*>                =N+5: error return from ZGGHRD
 | 
						|
*>                =N+6: error return from ZHGEQZ (other than failed
 | 
						|
*>                                               iteration)
 | 
						|
*>                =N+7: error return from ZGGBAK (computing VSL)
 | 
						|
*>                =N+8: error return from ZGGBAK (computing VSR)
 | 
						|
*>                =N+9: error return from ZLASCL (various places)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16GEeigen
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA,
 | 
						|
     $                  VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK,
 | 
						|
     $                  INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBVSL, JOBVSR
 | 
						|
      INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   RWORK( * )
 | 
						|
      COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
 | 
						|
     $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
 | 
						|
     $                   WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | 
						|
      COMPLEX*16         CZERO, CONE
 | 
						|
      PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
 | 
						|
     $                   CONE = ( 1.0D0, 0.0D0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY
 | 
						|
      INTEGER            ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
 | 
						|
     $                   IRIGHT, IROWS, IRWORK, ITAU, IWORK, LOPT,
 | 
						|
     $                   LWKMIN, LWKOPT, NB, NB1, NB2, NB3
 | 
						|
      DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
 | 
						|
     $                   SAFMIN, SMLNUM
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD, ZHGEQZ,
 | 
						|
     $                   ZLACPY, ZLASCL, ZLASET, ZUNGQR, ZUNMQR
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      DOUBLE PRECISION   DLAMCH, ZLANGE
 | 
						|
      EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          INT, MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Decode the input arguments
 | 
						|
*
 | 
						|
      IF( LSAME( JOBVSL, 'N' ) ) THEN
 | 
						|
         IJOBVL = 1
 | 
						|
         ILVSL = .FALSE.
 | 
						|
      ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
 | 
						|
         IJOBVL = 2
 | 
						|
         ILVSL = .TRUE.
 | 
						|
      ELSE
 | 
						|
         IJOBVL = -1
 | 
						|
         ILVSL = .FALSE.
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LSAME( JOBVSR, 'N' ) ) THEN
 | 
						|
         IJOBVR = 1
 | 
						|
         ILVSR = .FALSE.
 | 
						|
      ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
 | 
						|
         IJOBVR = 2
 | 
						|
         ILVSR = .TRUE.
 | 
						|
      ELSE
 | 
						|
         IJOBVR = -1
 | 
						|
         ILVSR = .FALSE.
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      LWKMIN = MAX( 2*N, 1 )
 | 
						|
      LWKOPT = LWKMIN
 | 
						|
      WORK( 1 ) = LWKOPT
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      INFO = 0
 | 
						|
      IF( IJOBVL.LE.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( IJOBVR.LE.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
 | 
						|
         INFO = -11
 | 
						|
      ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
 | 
						|
         INFO = -13
 | 
						|
      ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
         INFO = -15
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         NB1 = ILAENV( 1, 'ZGEQRF', ' ', N, N, -1, -1 )
 | 
						|
         NB2 = ILAENV( 1, 'ZUNMQR', ' ', N, N, N, -1 )
 | 
						|
         NB3 = ILAENV( 1, 'ZUNGQR', ' ', N, N, N, -1 )
 | 
						|
         NB = MAX( NB1, NB2, NB3 )
 | 
						|
         LOPT = N*( NB+1 )
 | 
						|
         WORK( 1 ) = LOPT
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZGEGS ', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Get machine constants
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
 | 
						|
      SAFMIN = DLAMCH( 'S' )
 | 
						|
      SMLNUM = N*SAFMIN / EPS
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
*
 | 
						|
*     Scale A if max element outside range [SMLNUM,BIGNUM]
 | 
						|
*
 | 
						|
      ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
 | 
						|
      ILASCL = .FALSE.
 | 
						|
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | 
						|
         ANRMTO = SMLNUM
 | 
						|
         ILASCL = .TRUE.
 | 
						|
      ELSE IF( ANRM.GT.BIGNUM ) THEN
 | 
						|
         ANRMTO = BIGNUM
 | 
						|
         ILASCL = .TRUE.
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ILASCL ) THEN
 | 
						|
         CALL ZLASCL( 'G', -1, -1, ANRM, ANRMTO, N, N, A, LDA, IINFO )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 9
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Scale B if max element outside range [SMLNUM,BIGNUM]
 | 
						|
*
 | 
						|
      BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
 | 
						|
      ILBSCL = .FALSE.
 | 
						|
      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | 
						|
         BNRMTO = SMLNUM
 | 
						|
         ILBSCL = .TRUE.
 | 
						|
      ELSE IF( BNRM.GT.BIGNUM ) THEN
 | 
						|
         BNRMTO = BIGNUM
 | 
						|
         ILBSCL = .TRUE.
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ILBSCL ) THEN
 | 
						|
         CALL ZLASCL( 'G', -1, -1, BNRM, BNRMTO, N, N, B, LDB, IINFO )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 9
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Permute the matrix to make it more nearly triangular
 | 
						|
*
 | 
						|
      ILEFT = 1
 | 
						|
      IRIGHT = N + 1
 | 
						|
      IRWORK = IRIGHT + N
 | 
						|
      IWORK = 1
 | 
						|
      CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
 | 
						|
     $             RWORK( IRIGHT ), RWORK( IRWORK ), IINFO )
 | 
						|
      IF( IINFO.NE.0 ) THEN
 | 
						|
         INFO = N + 1
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Reduce B to triangular form, and initialize VSL and/or VSR
 | 
						|
*
 | 
						|
      IROWS = IHI + 1 - ILO
 | 
						|
      ICOLS = N + 1 - ILO
 | 
						|
      ITAU = IWORK
 | 
						|
      IWORK = ITAU + IROWS
 | 
						|
      CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
 | 
						|
     $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
 | 
						|
      IF( IINFO.GE.0 )
 | 
						|
     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
 | 
						|
      IF( IINFO.NE.0 ) THEN
 | 
						|
         INFO = N + 2
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
 | 
						|
     $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
 | 
						|
     $             LWORK+1-IWORK, IINFO )
 | 
						|
      IF( IINFO.GE.0 )
 | 
						|
     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
 | 
						|
      IF( IINFO.NE.0 ) THEN
 | 
						|
         INFO = N + 3
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ILVSL ) THEN
 | 
						|
         CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
 | 
						|
         CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
 | 
						|
     $                VSL( ILO+1, ILO ), LDVSL )
 | 
						|
         CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
 | 
						|
     $                WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
 | 
						|
     $                IINFO )
 | 
						|
         IF( IINFO.GE.0 )
 | 
						|
     $      LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 4
 | 
						|
            GO TO 10
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ILVSR )
 | 
						|
     $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
 | 
						|
*
 | 
						|
*     Reduce to generalized Hessenberg form
 | 
						|
*
 | 
						|
      CALL ZGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
 | 
						|
     $             LDVSL, VSR, LDVSR, IINFO )
 | 
						|
      IF( IINFO.NE.0 ) THEN
 | 
						|
         INFO = N + 5
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Perform QZ algorithm, computing Schur vectors if desired
 | 
						|
*
 | 
						|
      IWORK = ITAU
 | 
						|
      CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
 | 
						|
     $             ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWORK ),
 | 
						|
     $             LWORK+1-IWORK, RWORK( IRWORK ), IINFO )
 | 
						|
      IF( IINFO.GE.0 )
 | 
						|
     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
 | 
						|
      IF( IINFO.NE.0 ) THEN
 | 
						|
         IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
 | 
						|
            INFO = IINFO
 | 
						|
         ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
 | 
						|
            INFO = IINFO - N
 | 
						|
         ELSE
 | 
						|
            INFO = N + 6
 | 
						|
         END IF
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Apply permutation to VSL and VSR
 | 
						|
*
 | 
						|
      IF( ILVSL ) THEN
 | 
						|
         CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
 | 
						|
     $                RWORK( IRIGHT ), N, VSL, LDVSL, IINFO )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 7
 | 
						|
            GO TO 10
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      IF( ILVSR ) THEN
 | 
						|
         CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
 | 
						|
     $                RWORK( IRIGHT ), N, VSR, LDVSR, IINFO )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 8
 | 
						|
            GO TO 10
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Undo scaling
 | 
						|
*
 | 
						|
      IF( ILASCL ) THEN
 | 
						|
         CALL ZLASCL( 'U', -1, -1, ANRMTO, ANRM, N, N, A, LDA, IINFO )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 9
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
         CALL ZLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHA, N, IINFO )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 9
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ILBSCL ) THEN
 | 
						|
         CALL ZLASCL( 'U', -1, -1, BNRMTO, BNRM, N, N, B, LDB, IINFO )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 9
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
         CALL ZLASCL( 'G', -1, -1, BNRMTO, BNRM, N, 1, BETA, N, IINFO )
 | 
						|
         IF( IINFO.NE.0 ) THEN
 | 
						|
            INFO = N + 9
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
   10 CONTINUE
 | 
						|
      WORK( 1 ) = LWKOPT
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZGEGS
 | 
						|
*
 | 
						|
      END
 |