1305 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1305 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static real c_b174 = 0.f;
 | |
| static real c_b175 = 1.f;
 | |
| static integer c__0 = 0;
 | |
| 
 | |
| /* > \brief \b ILAENV */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ILAENV + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ilaenv.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ilaenv.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ilaenv.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3, N4 ) */
 | |
| 
 | |
| /*       CHARACTER*( * )    NAME, OPTS */
 | |
| /*       INTEGER            ISPEC, N1, N2, N3, N4 */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ILAENV is called from the LAPACK routines to choose problem-dependent */
 | |
| /* > parameters for the local environment.  See ISPEC for a description of */
 | |
| /* > the parameters. */
 | |
| /* > */
 | |
| /* > ILAENV returns an INTEGER */
 | |
| /* > if ILAENV >= 0: ILAENV returns the value of the parameter specified by ISPEC */
 | |
| /* > if ILAENV < 0:  if ILAENV = -k, the k-th argument had an illegal value. */
 | |
| /* > */
 | |
| /* > This version provides a set of parameters which should give good, */
 | |
| /* > but not optimal, performance on many of the currently available */
 | |
| /* > computers.  Users are encouraged to modify this subroutine to set */
 | |
| /* > the tuning parameters for their particular machine using the option */
 | |
| /* > and problem size information in the arguments. */
 | |
| /* > */
 | |
| /* > This routine will not function correctly if it is converted to all */
 | |
| /* > lower case.  Converting it to all upper case is allowed. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] ISPEC */
 | |
| /* > \verbatim */
 | |
| /* >          ISPEC is INTEGER */
 | |
| /* >          Specifies the parameter to be returned as the value of */
 | |
| /* >          ILAENV. */
 | |
| /* >          = 1: the optimal blocksize; if this value is 1, an unblocked */
 | |
| /* >               algorithm will give the best performance. */
 | |
| /* >          = 2: the minimum block size for which the block routine */
 | |
| /* >               should be used; if the usable block size is less than */
 | |
| /* >               this value, an unblocked routine should be used. */
 | |
| /* >          = 3: the crossover point (in a block routine, for N less */
 | |
| /* >               than this value, an unblocked routine should be used) */
 | |
| /* >          = 4: the number of shifts, used in the nonsymmetric */
 | |
| /* >               eigenvalue routines (DEPRECATED) */
 | |
| /* >          = 5: the minimum column dimension for blocking to be used; */
 | |
| /* >               rectangular blocks must have dimension at least k by m, */
 | |
| /* >               where k is given by ILAENV(2,...) and m by ILAENV(5,...) */
 | |
| /* >          = 6: the crossover point for the SVD (when reducing an m by n */
 | |
| /* >               matrix to bidiagonal form, if f2cmax(m,n)/f2cmin(m,n) exceeds */
 | |
| /* >               this value, a QR factorization is used first to reduce */
 | |
| /* >               the matrix to a triangular form.) */
 | |
| /* >          = 7: the number of processors */
 | |
| /* >          = 8: the crossover point for the multishift QR method */
 | |
| /* >               for nonsymmetric eigenvalue problems (DEPRECATED) */
 | |
| /* >          = 9: maximum size of the subproblems at the bottom of the */
 | |
| /* >               computation tree in the divide-and-conquer algorithm */
 | |
| /* >               (used by xGELSD and xGESDD) */
 | |
| /* >          =10: ieee NaN arithmetic can be trusted not to trap */
 | |
| /* >          =11: infinity arithmetic can be trusted not to trap */
 | |
| /* >          12 <= ISPEC <= 16: */
 | |
| /* >               xHSEQR or related subroutines, */
 | |
| /* >               see IPARMQ for detailed explanation */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NAME */
 | |
| /* > \verbatim */
 | |
| /* >          NAME is CHARACTER*(*) */
 | |
| /* >          The name of the calling subroutine, in either upper case or */
 | |
| /* >          lower case. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] OPTS */
 | |
| /* > \verbatim */
 | |
| /* >          OPTS is CHARACTER*(*) */
 | |
| /* >          The character options to the subroutine NAME, concatenated */
 | |
| /* >          into a single character string.  For example, UPLO = 'U', */
 | |
| /* >          TRANS = 'T', and DIAG = 'N' for a triangular routine would */
 | |
| /* >          be specified as OPTS = 'UTN'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N1 */
 | |
| /* > \verbatim */
 | |
| /* >          N1 is INTEGER */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N2 */
 | |
| /* > \verbatim */
 | |
| /* >          N2 is INTEGER */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N3 */
 | |
| /* > \verbatim */
 | |
| /* >          N3 is INTEGER */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N4 */
 | |
| /* > \verbatim */
 | |
| /* >          N4 is INTEGER */
 | |
| /* >          Problem dimensions for the subroutine NAME; these may not all */
 | |
| /* >          be required. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date November 2019 */
 | |
| 
 | |
| /* > \ingroup OTHERauxiliary */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  The following conventions have been used when calling ILAENV from the */
 | |
| /* >  LAPACK routines: */
 | |
| /* >  1)  OPTS is a concatenation of all of the character options to */
 | |
| /* >      subroutine NAME, in the same order that they appear in the */
 | |
| /* >      argument list for NAME, even if they are not used in determining */
 | |
| /* >      the value of the parameter specified by ISPEC. */
 | |
| /* >  2)  The problem dimensions N1, N2, N3, N4 are specified in the order */
 | |
| /* >      that they appear in the argument list for NAME.  N1 is used */
 | |
| /* >      first, N2 second, and so on, and unused problem dimensions are */
 | |
| /* >      passed a value of -1. */
 | |
| /* >  3)  The parameter value returned by ILAENV is checked for validity in */
 | |
| /* >      the calling subroutine.  For example, ILAENV is used to retrieve */
 | |
| /* >      the optimal blocksize for STRTRI as follows: */
 | |
| /* > */
 | |
| /* >      NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 ) */
 | |
| /* >      IF( NB.LE.1 ) NB = MAX( 1, N ) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| integer ilaenv_(integer *ispec, char *name__, char *opts, integer *n1, 
 | |
| 	integer *n2, integer *n3, integer *n4, ftnlen name_len, ftnlen 
 | |
| 	opts_len)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer ret_val;
 | |
| 
 | |
|     /* Local variables */
 | |
|     logical twostage;
 | |
|     integer i__;
 | |
|     logical cname;
 | |
|     integer nbmin;
 | |
|     logical sname;
 | |
|     char c1[1], c2[2], c3[3], c4[2];
 | |
|     integer ic, nb;
 | |
|     extern integer ieeeck_(integer *, real *, real *);
 | |
|     integer iz, nx;
 | |
|     char subnam[16];
 | |
|     extern integer iparmq_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *);
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.9.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     November 2019 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
|     switch (*ispec) {
 | |
| 	case 1:  goto L10;
 | |
| 	case 2:  goto L10;
 | |
| 	case 3:  goto L10;
 | |
| 	case 4:  goto L80;
 | |
| 	case 5:  goto L90;
 | |
| 	case 6:  goto L100;
 | |
| 	case 7:  goto L110;
 | |
| 	case 8:  goto L120;
 | |
| 	case 9:  goto L130;
 | |
| 	case 10:  goto L140;
 | |
| 	case 11:  goto L150;
 | |
| 	case 12:  goto L160;
 | |
| 	case 13:  goto L160;
 | |
| 	case 14:  goto L160;
 | |
| 	case 15:  goto L160;
 | |
| 	case 16:  goto L160;
 | |
|     }
 | |
| 
 | |
| /*     Invalid value for ISPEC */
 | |
| 
 | |
|     ret_val = -1;
 | |
|     return ret_val;
 | |
| 
 | |
| L10:
 | |
| 
 | |
| /*     Convert NAME to upper case if the first character is lower case. */
 | |
| 
 | |
|     ret_val = 1;
 | |
|     s_copy(subnam, name__, (ftnlen)16, name_len);
 | |
|     ic = *(unsigned char *)subnam;
 | |
|     iz = 'Z';
 | |
|     if (iz == 90 || iz == 122) {
 | |
| 
 | |
| /*        ASCII character set */
 | |
| 
 | |
| 	if (ic >= 97 && ic <= 122) {
 | |
| 	    *(unsigned char *)subnam = (char) (ic - 32);
 | |
| 	    for (i__ = 2; i__ <= 6; ++i__) {
 | |
| 		ic = *(unsigned char *)&subnam[i__ - 1];
 | |
| 		if (ic >= 97 && ic <= 122) {
 | |
| 		    *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32);
 | |
| 		}
 | |
| /* L20: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|     } else if (iz == 233 || iz == 169) {
 | |
| 
 | |
| /*        EBCDIC character set */
 | |
| 
 | |
| 	if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >= 162 && 
 | |
| 		ic <= 169) {
 | |
| 	    *(unsigned char *)subnam = (char) (ic + 64);
 | |
| 	    for (i__ = 2; i__ <= 6; ++i__) {
 | |
| 		ic = *(unsigned char *)&subnam[i__ - 1];
 | |
| 		if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >= 
 | |
| 			162 && ic <= 169) {
 | |
| 		    *(unsigned char *)&subnam[i__ - 1] = (char) (ic + 64);
 | |
| 		}
 | |
| /* L30: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|     } else if (iz == 218 || iz == 250) {
 | |
| 
 | |
| /*        Prime machines:  ASCII+128 */
 | |
| 
 | |
| 	if (ic >= 225 && ic <= 250) {
 | |
| 	    *(unsigned char *)subnam = (char) (ic - 32);
 | |
| 	    for (i__ = 2; i__ <= 6; ++i__) {
 | |
| 		ic = *(unsigned char *)&subnam[i__ - 1];
 | |
| 		if (ic >= 225 && ic <= 250) {
 | |
| 		    *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32);
 | |
| 		}
 | |
| /* L40: */
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     *(unsigned char *)c1 = *(unsigned char *)subnam;
 | |
|     sname = *(unsigned char *)c1 == 'S' || *(unsigned char *)c1 == 'D';
 | |
|     cname = *(unsigned char *)c1 == 'C' || *(unsigned char *)c1 == 'Z';
 | |
|     if (! (cname || sname)) {
 | |
| 	return ret_val;
 | |
|     }
 | |
|     s_copy(c2, subnam + 1, (ftnlen)2, (ftnlen)2);
 | |
|     s_copy(c3, subnam + 3, (ftnlen)3, (ftnlen)3);
 | |
|     s_copy(c4, c3 + 1, (ftnlen)2, (ftnlen)2);
 | |
|     twostage = i_len(subnam, (ftnlen)16) >= 11 && *(unsigned char *)&subnam[
 | |
| 	    10] == '2';
 | |
| 
 | |
|     switch (*ispec) {
 | |
| 	case 1:  goto L50;
 | |
| 	case 2:  goto L60;
 | |
| 	case 3:  goto L70;
 | |
|     }
 | |
| 
 | |
| L50:
 | |
| 
 | |
| /*     ISPEC = 1:  block size */
 | |
| 
 | |
| /*     In these examples, separate code is provided for setting NB for */
 | |
| /*     real and complex.  We assume that NB will take the same value in */
 | |
| /*     single or double precision. */
 | |
| 
 | |
|     nb = 1;
 | |
| 
 | |
|     if (s_cmp(subnam + 1, "LAORH", (ftnlen)5, (ftnlen)5) == 0) {
 | |
| 
 | |
| /*        This is for *LAORHR_GETRFNP routine */
 | |
| 
 | |
| 	if (sname) {
 | |
| 	    nb = 32;
 | |
| 	} else {
 | |
| 	    nb = 32;
 | |
| 	}
 | |
|     } else if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (sname) {
 | |
| 		nb = 64;
 | |
| 	    } else {
 | |
| 		nb = 64;
 | |
| 	    }
 | |
| 	} else if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, 
 | |
| 		"RQF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)
 | |
| 		3, (ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) 
 | |
| 		== 0) {
 | |
| 	    if (sname) {
 | |
| 		nb = 32;
 | |
| 	    } else {
 | |
| 		nb = 32;
 | |
| 	    }
 | |
| 	} else if (s_cmp(c3, "QR ", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (*n3 == 1) {
 | |
| 		if (sname) {
 | |
| /*     M*N */
 | |
| 		    if (*n1 * *n2 <= 131072 || *n1 <= 8192) {
 | |
| 			nb = *n1;
 | |
| 		    } else {
 | |
| 			nb = 32768 / *n2;
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    if (*n1 * *n2 <= 131072 || *n1 <= 8192) {
 | |
| 			nb = *n1;
 | |
| 		    } else {
 | |
| 			nb = 32768 / *n2;
 | |
| 		    }
 | |
| 		}
 | |
| 	    } else {
 | |
| 		if (sname) {
 | |
| 		    nb = 1;
 | |
| 		} else {
 | |
| 		    nb = 1;
 | |
| 		}
 | |
| 	    }
 | |
| 	} else if (s_cmp(c3, "LQ ", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (*n3 == 2) {
 | |
| 		if (sname) {
 | |
| /*     M*N */
 | |
| 		    if (*n1 * *n2 <= 131072 || *n1 <= 8192) {
 | |
| 			nb = *n1;
 | |
| 		    } else {
 | |
| 			nb = 32768 / *n2;
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    if (*n1 * *n2 <= 131072 || *n1 <= 8192) {
 | |
| 			nb = *n1;
 | |
| 		    } else {
 | |
| 			nb = 32768 / *n2;
 | |
| 		    }
 | |
| 		}
 | |
| 	    } else {
 | |
| 		if (sname) {
 | |
| 		    nb = 1;
 | |
| 		} else {
 | |
| 		    nb = 1;
 | |
| 		}
 | |
| 	    }
 | |
| 	} else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (sname) {
 | |
| 		nb = 32;
 | |
| 	    } else {
 | |
| 		nb = 32;
 | |
| 	    }
 | |
| 	} else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (sname) {
 | |
| 		nb = 32;
 | |
| 	    } else {
 | |
| 		nb = 32;
 | |
| 	    }
 | |
| 	} else if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (sname) {
 | |
| 		nb = 64;
 | |
| 	    } else {
 | |
| 		nb = 64;
 | |
| 	    }
 | |
| 	}
 | |
|     } else if (s_cmp(c2, "PO", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (sname) {
 | |
| 		nb = 64;
 | |
| 	    } else {
 | |
| 		nb = 64;
 | |
| 	    }
 | |
| 	}
 | |
|     } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (sname) {
 | |
| 		if (twostage) {
 | |
| 		    nb = 192;
 | |
| 		} else {
 | |
| 		    nb = 64;
 | |
| 		}
 | |
| 	    } else {
 | |
| 		if (twostage) {
 | |
| 		    nb = 192;
 | |
| 		} else {
 | |
| 		    nb = 64;
 | |
| 		}
 | |
| 	    }
 | |
| 	} else if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    nb = 32;
 | |
| 	} else if (sname && s_cmp(c3, "GST", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    nb = 64;
 | |
| 	}
 | |
|     } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (twostage) {
 | |
| 		nb = 192;
 | |
| 	    } else {
 | |
| 		nb = 64;
 | |
| 	    }
 | |
| 	} else if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    nb = 32;
 | |
| 	} else if (s_cmp(c3, "GST", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    nb = 64;
 | |
| 	}
 | |
|     } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (*(unsigned char *)c3 == 'G') {
 | |
| 	    if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", 
 | |
| 		    (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
 | |
| 		    ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
 | |
| 		     0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
 | |
| 		    c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
 | |
| 		    ftnlen)2, (ftnlen)2) == 0) {
 | |
| 		nb = 32;
 | |
| 	    }
 | |
| 	} else if (*(unsigned char *)c3 == 'M') {
 | |
| 	    if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", 
 | |
| 		    (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
 | |
| 		    ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
 | |
| 		     0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
 | |
| 		    c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
 | |
| 		    ftnlen)2, (ftnlen)2) == 0) {
 | |
| 		nb = 32;
 | |
| 	    }
 | |
| 	}
 | |
|     } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (*(unsigned char *)c3 == 'G') {
 | |
| 	    if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", 
 | |
| 		    (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
 | |
| 		    ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
 | |
| 		     0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
 | |
| 		    c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
 | |
| 		    ftnlen)2, (ftnlen)2) == 0) {
 | |
| 		nb = 32;
 | |
| 	    }
 | |
| 	} else if (*(unsigned char *)c3 == 'M') {
 | |
| 	    if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", 
 | |
| 		    (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
 | |
| 		    ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
 | |
| 		     0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
 | |
| 		    c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
 | |
| 		    ftnlen)2, (ftnlen)2) == 0) {
 | |
| 		nb = 32;
 | |
| 	    }
 | |
| 	}
 | |
|     } else if (s_cmp(c2, "GB", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (sname) {
 | |
| 		if (*n4 <= 64) {
 | |
| 		    nb = 1;
 | |
| 		} else {
 | |
| 		    nb = 32;
 | |
| 		}
 | |
| 	    } else {
 | |
| 		if (*n4 <= 64) {
 | |
| 		    nb = 1;
 | |
| 		} else {
 | |
| 		    nb = 32;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     } else if (s_cmp(c2, "PB", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (sname) {
 | |
| 		if (*n2 <= 64) {
 | |
| 		    nb = 1;
 | |
| 		} else {
 | |
| 		    nb = 32;
 | |
| 		}
 | |
| 	    } else {
 | |
| 		if (*n2 <= 64) {
 | |
| 		    nb = 1;
 | |
| 		} else {
 | |
| 		    nb = 32;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     } else if (s_cmp(c2, "TR", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (sname) {
 | |
| 		nb = 64;
 | |
| 	    } else {
 | |
| 		nb = 64;
 | |
| 	    }
 | |
| 	} else if (s_cmp(c3, "EVC", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (sname) {
 | |
| 		nb = 64;
 | |
| 	    } else {
 | |
| 		nb = 64;
 | |
| 	    }
 | |
| 	}
 | |
|     } else if (s_cmp(c2, "LA", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (s_cmp(c3, "UUM", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (sname) {
 | |
| 		nb = 64;
 | |
| 	    } else {
 | |
| 		nb = 64;
 | |
| 	    }
 | |
| 	}
 | |
|     } else if (sname && s_cmp(c2, "ST", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (s_cmp(c3, "EBZ", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    nb = 1;
 | |
| 	}
 | |
|     } else if (s_cmp(c2, "GG", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	nb = 32;
 | |
| 	if (s_cmp(c3, "HD3", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (sname) {
 | |
| 		nb = 32;
 | |
| 	    } else {
 | |
| 		nb = 32;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|     ret_val = nb;
 | |
|     return ret_val;
 | |
| 
 | |
| L60:
 | |
| 
 | |
| /*     ISPEC = 2:  minimum block size */
 | |
| 
 | |
|     nbmin = 2;
 | |
|     if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", (
 | |
| 		ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)3, (
 | |
| 		ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0)
 | |
| 		 {
 | |
| 	    if (sname) {
 | |
| 		nbmin = 2;
 | |
| 	    } else {
 | |
| 		nbmin = 2;
 | |
| 	    }
 | |
| 	} else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (sname) {
 | |
| 		nbmin = 2;
 | |
| 	    } else {
 | |
| 		nbmin = 2;
 | |
| 	    }
 | |
| 	} else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (sname) {
 | |
| 		nbmin = 2;
 | |
| 	    } else {
 | |
| 		nbmin = 2;
 | |
| 	    }
 | |
| 	} else if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (sname) {
 | |
| 		nbmin = 2;
 | |
| 	    } else {
 | |
| 		nbmin = 2;
 | |
| 	    }
 | |
| 	}
 | |
|     } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (sname) {
 | |
| 		nbmin = 8;
 | |
| 	    } else {
 | |
| 		nbmin = 8;
 | |
| 	    }
 | |
| 	} else if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    nbmin = 2;
 | |
| 	}
 | |
|     } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    nbmin = 2;
 | |
| 	}
 | |
|     } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (*(unsigned char *)c3 == 'G') {
 | |
| 	    if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", 
 | |
| 		    (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
 | |
| 		    ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
 | |
| 		     0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
 | |
| 		    c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
 | |
| 		    ftnlen)2, (ftnlen)2) == 0) {
 | |
| 		nbmin = 2;
 | |
| 	    }
 | |
| 	} else if (*(unsigned char *)c3 == 'M') {
 | |
| 	    if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", 
 | |
| 		    (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
 | |
| 		    ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
 | |
| 		     0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
 | |
| 		    c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
 | |
| 		    ftnlen)2, (ftnlen)2) == 0) {
 | |
| 		nbmin = 2;
 | |
| 	    }
 | |
| 	}
 | |
|     } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (*(unsigned char *)c3 == 'G') {
 | |
| 	    if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", 
 | |
| 		    (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
 | |
| 		    ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
 | |
| 		     0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
 | |
| 		    c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
 | |
| 		    ftnlen)2, (ftnlen)2) == 0) {
 | |
| 		nbmin = 2;
 | |
| 	    }
 | |
| 	} else if (*(unsigned char *)c3 == 'M') {
 | |
| 	    if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", 
 | |
| 		    (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
 | |
| 		    ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
 | |
| 		     0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
 | |
| 		    c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
 | |
| 		    ftnlen)2, (ftnlen)2) == 0) {
 | |
| 		nbmin = 2;
 | |
| 	    }
 | |
| 	}
 | |
|     } else if (s_cmp(c2, "GG", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	nbmin = 2;
 | |
| 	if (s_cmp(c3, "HD3", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    nbmin = 2;
 | |
| 	}
 | |
|     }
 | |
|     ret_val = nbmin;
 | |
|     return ret_val;
 | |
| 
 | |
| L70:
 | |
| 
 | |
| /*     ISPEC = 3:  crossover point */
 | |
| 
 | |
|     nx = 0;
 | |
|     if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", (
 | |
| 		ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)3, (
 | |
| 		ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0)
 | |
| 		 {
 | |
| 	    if (sname) {
 | |
| 		nx = 128;
 | |
| 	    } else {
 | |
| 		nx = 128;
 | |
| 	    }
 | |
| 	} else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (sname) {
 | |
| 		nx = 128;
 | |
| 	    } else {
 | |
| 		nx = 128;
 | |
| 	    }
 | |
| 	} else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (sname) {
 | |
| 		nx = 128;
 | |
| 	    } else {
 | |
| 		nx = 128;
 | |
| 	    }
 | |
| 	}
 | |
|     } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    nx = 32;
 | |
| 	}
 | |
|     } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    nx = 32;
 | |
| 	}
 | |
|     } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (*(unsigned char *)c3 == 'G') {
 | |
| 	    if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", 
 | |
| 		    (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
 | |
| 		    ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
 | |
| 		     0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
 | |
| 		    c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
 | |
| 		    ftnlen)2, (ftnlen)2) == 0) {
 | |
| 		nx = 128;
 | |
| 	    }
 | |
| 	}
 | |
|     } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	if (*(unsigned char *)c3 == 'G') {
 | |
| 	    if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", 
 | |
| 		    (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
 | |
| 		    ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
 | |
| 		     0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
 | |
| 		    c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
 | |
| 		    ftnlen)2, (ftnlen)2) == 0) {
 | |
| 		nx = 128;
 | |
| 	    }
 | |
| 	}
 | |
|     } else if (s_cmp(c2, "GG", (ftnlen)2, (ftnlen)2) == 0) {
 | |
| 	nx = 128;
 | |
| 	if (s_cmp(c3, "HD3", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    nx = 128;
 | |
| 	}
 | |
|     }
 | |
|     ret_val = nx;
 | |
|     return ret_val;
 | |
| 
 | |
| L80:
 | |
| 
 | |
| /*     ISPEC = 4:  number of shifts (used by xHSEQR) */
 | |
| 
 | |
|     ret_val = 6;
 | |
|     return ret_val;
 | |
| 
 | |
| L90:
 | |
| 
 | |
| /*     ISPEC = 5:  minimum column dimension (not used) */
 | |
| 
 | |
|     ret_val = 2;
 | |
|     return ret_val;
 | |
| 
 | |
| L100:
 | |
| 
 | |
| /*     ISPEC = 6:  crossover point for SVD (used by xGELSS and xGESVD) */
 | |
| 
 | |
|     ret_val = (integer) ((real) f2cmin(*n1,*n2) * 1.6f);
 | |
|     return ret_val;
 | |
| 
 | |
| L110:
 | |
| 
 | |
| /*     ISPEC = 7:  number of processors (not used) */
 | |
| 
 | |
|     ret_val = 1;
 | |
|     return ret_val;
 | |
| 
 | |
| L120:
 | |
| 
 | |
| /*     ISPEC = 8:  crossover point for multishift (used by xHSEQR) */
 | |
| 
 | |
|     ret_val = 50;
 | |
|     return ret_val;
 | |
| 
 | |
| L130:
 | |
| 
 | |
| /*     ISPEC = 9:  maximum size of the subproblems at the bottom of the */
 | |
| /*                 computation tree in the divide-and-conquer algorithm */
 | |
| /*                 (used by xGELSD and xGESDD) */
 | |
| 
 | |
|     ret_val = 25;
 | |
|     return ret_val;
 | |
| 
 | |
| L140:
 | |
| 
 | |
| /*     ISPEC = 10: ieee NaN arithmetic can be trusted not to trap */
 | |
| 
 | |
| /*     ILAENV = 0 */
 | |
|     ret_val = 1;
 | |
|     if (ret_val == 1) {
 | |
| 	ret_val = ieeeck_(&c__1, &c_b174, &c_b175);
 | |
|     }
 | |
|     return ret_val;
 | |
| 
 | |
| L150:
 | |
| 
 | |
| /*     ISPEC = 11: infinity arithmetic can be trusted not to trap */
 | |
| 
 | |
| /*     ILAENV = 0 */
 | |
|     ret_val = 1;
 | |
|     if (ret_val == 1) {
 | |
| 	ret_val = ieeeck_(&c__0, &c_b174, &c_b175);
 | |
|     }
 | |
|     return ret_val;
 | |
| 
 | |
| L160:
 | |
| 
 | |
| /*     12 <= ISPEC <= 16: xHSEQR or related subroutines. */
 | |
| 
 | |
|     ret_val = iparmq_(ispec, name__, opts, n1, n2, n3, n4)
 | |
| 	    ;
 | |
|     return ret_val;
 | |
| 
 | |
| /*     End of ILAENV */
 | |
| 
 | |
| } /* ilaenv_ */
 | |
| 
 |