474 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			474 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CHEGVX
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CHEGVX + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chegvx.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chegvx.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chegvx.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
 | |
| *                          VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
 | |
| *                          LWORK, RWORK, IWORK, IFAIL, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBZ, RANGE, UPLO
 | |
| *       INTEGER            IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
 | |
| *       REAL               ABSTOL, VL, VU
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IFAIL( * ), IWORK( * )
 | |
| *       REAL               RWORK( * ), W( * )
 | |
| *       COMPLEX            A( LDA, * ), B( LDB, * ), WORK( * ),
 | |
| *      $                   Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CHEGVX computes selected eigenvalues, and optionally, eigenvectors
 | |
| *> of a complex generalized Hermitian-definite eigenproblem, of the form
 | |
| *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
 | |
| *> B are assumed to be Hermitian and B is also positive definite.
 | |
| *> Eigenvalues and eigenvectors can be selected by specifying either a
 | |
| *> range of values or a range of indices for the desired eigenvalues.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] ITYPE
 | |
| *> \verbatim
 | |
| *>          ITYPE is INTEGER
 | |
| *>          Specifies the problem type to be solved:
 | |
| *>          = 1:  A*x = (lambda)*B*x
 | |
| *>          = 2:  A*B*x = (lambda)*x
 | |
| *>          = 3:  B*A*x = (lambda)*x
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBZ
 | |
| *> \verbatim
 | |
| *>          JOBZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only;
 | |
| *>          = 'V':  Compute eigenvalues and eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RANGE
 | |
| *> \verbatim
 | |
| *>          RANGE is CHARACTER*1
 | |
| *>          = 'A': all eigenvalues will be found.
 | |
| *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
 | |
| *>                 will be found.
 | |
| *>          = 'I': the IL-th through IU-th eigenvalues will be found.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangles of A and B are stored;
 | |
| *>          = 'L':  Lower triangles of A and B are stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A and B.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA, N)
 | |
| *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
 | |
| *>          leading N-by-N upper triangular part of A contains the
 | |
| *>          upper triangular part of the matrix A.  If UPLO = 'L',
 | |
| *>          the leading N-by-N lower triangular part of A contains
 | |
| *>          the lower triangular part of the matrix A.
 | |
| *>
 | |
| *>          On exit,  the lower triangle (if UPLO='L') or the upper
 | |
| *>          triangle (if UPLO='U') of A, including the diagonal, is
 | |
| *>          destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB, N)
 | |
| *>          On entry, the Hermitian matrix B.  If UPLO = 'U', the
 | |
| *>          leading N-by-N upper triangular part of B contains the
 | |
| *>          upper triangular part of the matrix B.  If UPLO = 'L',
 | |
| *>          the leading N-by-N lower triangular part of B contains
 | |
| *>          the lower triangular part of the matrix B.
 | |
| *>
 | |
| *>          On exit, if INFO <= N, the part of B containing the matrix is
 | |
| *>          overwritten by the triangular factor U or L from the Cholesky
 | |
| *>          factorization B = U**H*U or B = L*L**H.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VL
 | |
| *> \verbatim
 | |
| *>          VL is REAL
 | |
| *>
 | |
| *>          If RANGE='V', the lower bound of the interval to
 | |
| *>          be searched for eigenvalues. VL < VU.
 | |
| *>          Not referenced if RANGE = 'A' or 'I'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VU
 | |
| *> \verbatim
 | |
| *>          VU is REAL
 | |
| *>
 | |
| *>          If RANGE='V', the upper bound of the interval to
 | |
| *>          be searched for eigenvalues. VL < VU.
 | |
| *>          Not referenced if RANGE = 'A' or 'I'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IL
 | |
| *> \verbatim
 | |
| *>          IL is INTEGER
 | |
| *>
 | |
| *>          If RANGE='I', the index of the
 | |
| *>          smallest eigenvalue to be returned.
 | |
| *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
 | |
| *>          Not referenced if RANGE = 'A' or 'V'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IU
 | |
| *> \verbatim
 | |
| *>          IU is INTEGER
 | |
| *>
 | |
| *>          If RANGE='I', the index of the
 | |
| *>          largest eigenvalue to be returned.
 | |
| *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
 | |
| *>          Not referenced if RANGE = 'A' or 'V'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ABSTOL
 | |
| *> \verbatim
 | |
| *>          ABSTOL is REAL
 | |
| *>          The absolute error tolerance for the eigenvalues.
 | |
| *>          An approximate eigenvalue is accepted as converged
 | |
| *>          when it is determined to lie in an interval [a,b]
 | |
| *>          of width less than or equal to
 | |
| *>
 | |
| *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
 | |
| *>
 | |
| *>          where EPS is the machine precision.  If ABSTOL is less than
 | |
| *>          or equal to zero, then  EPS*|T|  will be used in its place,
 | |
| *>          where |T| is the 1-norm of the tridiagonal matrix obtained
 | |
| *>          by reducing C to tridiagonal form, where C is the symmetric
 | |
| *>          matrix of the standard symmetric problem to which the
 | |
| *>          generalized problem is transformed.
 | |
| *>
 | |
| *>          Eigenvalues will be computed most accurately when ABSTOL is
 | |
| *>          set to twice the underflow threshold 2*SLAMCH('S'), not zero.
 | |
| *>          If this routine returns with INFO>0, indicating that some
 | |
| *>          eigenvectors did not converge, try setting ABSTOL to
 | |
| *>          2*SLAMCH('S').
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The total number of eigenvalues found.  0 <= M <= N.
 | |
| *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is REAL array, dimension (N)
 | |
| *>          The first M elements contain the selected
 | |
| *>          eigenvalues in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is COMPLEX array, dimension (LDZ, max(1,M))
 | |
| *>          If JOBZ = 'N', then Z is not referenced.
 | |
| *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
 | |
| *>          contain the orthonormal eigenvectors of the matrix A
 | |
| *>          corresponding to the selected eigenvalues, with the i-th
 | |
| *>          column of Z holding the eigenvector associated with W(i).
 | |
| *>          The eigenvectors are normalized as follows:
 | |
| *>          if ITYPE = 1 or 2, Z**T*B*Z = I;
 | |
| *>          if ITYPE = 3, Z**T*inv(B)*Z = I.
 | |
| *>
 | |
| *>          If an eigenvector fails to converge, then that column of Z
 | |
| *>          contains the latest approximation to the eigenvector, and the
 | |
| *>          index of the eigenvector is returned in IFAIL.
 | |
| *>          Note: the user must ensure that at least max(1,M) columns are
 | |
| *>          supplied in the array Z; if RANGE = 'V', the exact value of M
 | |
| *>          is not known in advance and an upper bound must be used.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1, and if
 | |
| *>          JOBZ = 'V', LDZ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The length of the array WORK.  LWORK >= max(1,2*N).
 | |
| *>          For optimal efficiency, LWORK >= (NB+1)*N,
 | |
| *>          where NB is the blocksize for CHETRD returned by ILAENV.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (7*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (5*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IFAIL
 | |
| *> \verbatim
 | |
| *>          IFAIL is INTEGER array, dimension (N)
 | |
| *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
 | |
| *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
 | |
| *>          indices of the eigenvectors that failed to converge.
 | |
| *>          If JOBZ = 'N', then IFAIL is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  CPOTRF or CHEEVX returned an error code:
 | |
| *>             <= N:  if INFO = i, CHEEVX failed to converge;
 | |
| *>                    i eigenvectors failed to converge.  Their indices
 | |
| *>                    are stored in array IFAIL.
 | |
| *>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
 | |
| *>                    principal minor of order i of B is not positive.
 | |
| *>                    The factorization of B could not be completed and
 | |
| *>                    no eigenvalues or eigenvectors were computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexHEeigen
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
 | |
|      $                   VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
 | |
|      $                   LWORK, RWORK, IWORK, IFAIL, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBZ, RANGE, UPLO
 | |
|       INTEGER            IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
 | |
|       REAL               ABSTOL, VL, VU
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IFAIL( * ), IWORK( * )
 | |
|       REAL               RWORK( * ), W( * )
 | |
|       COMPLEX            A( LDA, * ), B( LDB, * ), WORK( * ),
 | |
|      $                   Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            CONE
 | |
|       PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
 | |
|       CHARACTER          TRANS
 | |
|       INTEGER            LWKOPT, NB
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           ILAENV, LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CHEEVX, CHEGST, CPOTRF, CTRMM, CTRSM, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       WANTZ = LSAME( JOBZ, 'V' )
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       ALLEIG = LSAME( RANGE, 'A' )
 | |
|       VALEIG = LSAME( RANGE, 'V' )
 | |
|       INDEIG = LSAME( RANGE, 'I' )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -9
 | |
|       ELSE
 | |
|          IF( VALEIG ) THEN
 | |
|             IF( N.GT.0 .AND. VU.LE.VL )
 | |
|      $         INFO = -11
 | |
|          ELSE IF( INDEIG ) THEN
 | |
|             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
 | |
|                INFO = -12
 | |
|             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
 | |
|                INFO = -13
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
|       IF (INFO.EQ.0) THEN
 | |
|          IF (LDZ.LT.1 .OR. (WANTZ .AND. LDZ.LT.N)) THEN
 | |
|             INFO = -18
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          NB = ILAENV( 1, 'CHETRD', UPLO, N, -1, -1, -1 )
 | |
|          LWKOPT = MAX( 1, ( NB + 1 )*N )
 | |
|          WORK( 1 ) = LWKOPT
 | |
| *
 | |
|          IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -20
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CHEGVX', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       M = 0
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Form a Cholesky factorization of B.
 | |
| *
 | |
|       CALL CPOTRF( UPLO, N, B, LDB, INFO )
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          INFO = N + INFO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Transform problem to standard eigenvalue problem and solve.
 | |
| *
 | |
|       CALL CHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
 | |
|       CALL CHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
 | |
|      $             M, W, Z, LDZ, WORK, LWORK, RWORK, IWORK, IFAIL,
 | |
|      $             INFO )
 | |
| *
 | |
|       IF( WANTZ ) THEN
 | |
| *
 | |
| *        Backtransform eigenvectors to the original problem.
 | |
| *
 | |
|          IF( INFO.GT.0 )
 | |
|      $      M = INFO - 1
 | |
|          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
 | |
| *
 | |
| *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
 | |
| *           backtransform eigenvectors: x = inv(L)**H*y or inv(U)*y
 | |
| *
 | |
|             IF( UPPER ) THEN
 | |
|                TRANS = 'N'
 | |
|             ELSE
 | |
|                TRANS = 'C'
 | |
|             END IF
 | |
| *
 | |
|             CALL CTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, M, CONE, B,
 | |
|      $                  LDB, Z, LDZ )
 | |
| *
 | |
|          ELSE IF( ITYPE.EQ.3 ) THEN
 | |
| *
 | |
| *           For B*A*x=(lambda)*x;
 | |
| *           backtransform eigenvectors: x = L*y or U**H*y
 | |
| *
 | |
|             IF( UPPER ) THEN
 | |
|                TRANS = 'C'
 | |
|             ELSE
 | |
|                TRANS = 'N'
 | |
|             END IF
 | |
| *
 | |
|             CALL CTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, M, CONE, B,
 | |
|      $                  LDB, Z, LDZ )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Set WORK(1) to optimal complex workspace size.
 | |
| *
 | |
|       WORK( 1 ) = LWKOPT
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CHEGVX
 | |
| *
 | |
|       END
 |