342 lines
9.1 KiB
C
342 lines
9.1 KiB
C
/***************************************************************************
|
|
Copyright (c) 2022, The OpenBLAS Project
|
|
All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
3. Neither the name of the OpenBLAS project nor the names of
|
|
its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
|
|
#include "common.h"
|
|
|
|
#if !defined(DOUBLE)
|
|
#define VSETVL(n) __riscv_vsetvl_e32m2(n)
|
|
#define VSETVL_MAX __riscv_vsetvlmax_e32m2()
|
|
#define FLOAT_V_T vfloat32m2_t
|
|
#define VLEV_FLOAT __riscv_vle32_v_f32m2
|
|
#define VSEV_FLOAT __riscv_vse32_v_f32m2
|
|
#define VLSEG2_FLOAT __riscv_vlseg2e32_v_f32m2
|
|
#define VSSEG2_FLOAT __riscv_vsseg2e32_v_f32m2
|
|
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f32m2
|
|
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f32m2
|
|
#define VFMULVF_FLOAT __riscv_vfmul_vf_f32m2
|
|
#else
|
|
#define VSETVL(n) __riscv_vsetvl_e64m2(n)
|
|
#define VSETVL_MAX __riscv_vsetvlmax_e64m2()
|
|
#define FLOAT_V_T vfloat64m2_t
|
|
#define VLEV_FLOAT __riscv_vle64_v_f64m2
|
|
#define VSEV_FLOAT __riscv_vse64_v_f64m2
|
|
#define VLSEG2_FLOAT __riscv_vlseg2e64_v_f64m2
|
|
#define VSSEG2_FLOAT __riscv_vsseg2e64_v_f64m2
|
|
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f64m2
|
|
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f64m2
|
|
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f64m2
|
|
#define VFMULVF_FLOAT __riscv_vfmul_vf_f64m2
|
|
#endif
|
|
|
|
|
|
static FLOAT dm1 = -1.;
|
|
|
|
#ifdef CONJ
|
|
#define GEMM_KERNEL GEMM_KERNEL_R
|
|
#else
|
|
#define GEMM_KERNEL GEMM_KERNEL_N
|
|
#endif
|
|
|
|
#if GEMM_DEFAULT_UNROLL_N == 1
|
|
#define GEMM_UNROLL_N_SHIFT 0
|
|
#endif
|
|
|
|
#if GEMM_DEFAULT_UNROLL_N == 2
|
|
#define GEMM_UNROLL_N_SHIFT 1
|
|
#endif
|
|
|
|
#if GEMM_DEFAULT_UNROLL_N == 4
|
|
#define GEMM_UNROLL_N_SHIFT 2
|
|
#endif
|
|
|
|
#if GEMM_DEFAULT_UNROLL_N == 8
|
|
#define GEMM_UNROLL_N_SHIFT 3
|
|
#endif
|
|
|
|
#if GEMM_DEFAULT_UNROLL_N == 16
|
|
#define GEMM_UNROLL_N_SHIFT 4
|
|
#endif
|
|
|
|
// Optimizes the implementation in ../arm64/trsm_kernel_RT_sve.c
|
|
|
|
#ifndef COMPLEX
|
|
|
|
static inline void solve(BLASLONG m, BLASLONG n, FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc) {
|
|
|
|
FLOAT bb;
|
|
FLOAT *pci, *pcj;
|
|
|
|
int i, j, k;
|
|
FLOAT_V_T va, vc;
|
|
|
|
size_t vl;
|
|
|
|
a += (n - 1) * m;
|
|
b += (n - 1) * n;
|
|
|
|
for (i = n - 1; i >= 0; i--) {
|
|
|
|
bb = *(b + i);
|
|
pci = c + i * ldc;
|
|
pcj = c;
|
|
for (j = m; j > 0; j -= vl) {
|
|
vl = VSETVL(j);
|
|
va = VLEV_FLOAT(pci, vl);
|
|
va = VFMULVF_FLOAT(va, bb, vl);
|
|
VSEV_FLOAT(a, va, vl);
|
|
VSEV_FLOAT(pci, va, vl);
|
|
a += vl;
|
|
pci += vl;
|
|
for (k = 0; k < i; k ++){
|
|
vc = VLEV_FLOAT(pcj + k * ldc, vl);
|
|
vc = VFNMSACVF_FLOAT(vc, *(b + k), va, vl);
|
|
VSEV_FLOAT(pcj + k * ldc, vc, vl);
|
|
}
|
|
pcj += vl;
|
|
}
|
|
b -= n;
|
|
a -= 2 * m;
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void solve(BLASLONG m, BLASLONG n, FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc) {
|
|
|
|
FLOAT bb1, bb2;
|
|
|
|
FLOAT *pci, *pcj;
|
|
|
|
int i, j, k;
|
|
|
|
FLOAT_V_T va1, va2, vs1, vs2, vc1, vc2;
|
|
|
|
size_t vl;
|
|
|
|
a += (n - 1) * m * 2;
|
|
b += (n - 1) * n * 2;
|
|
|
|
for (i = n - 1; i >= 0; i--) {
|
|
|
|
bb1 = *(b + i * 2 + 0);
|
|
bb2 = *(b + i * 2 + 1);
|
|
|
|
pci = c + i * ldc * 2;
|
|
pcj = c;
|
|
for (j = m; j > 0; j -= vl) {
|
|
vl = VSETVL(j);
|
|
VLSEG2_FLOAT(&va1, &va2, pci, vl);
|
|
#ifndef CONJ
|
|
vs1 = VFMULVF_FLOAT(va1, bb1, vl);
|
|
vs1 = VFNMSACVF_FLOAT(vs1, bb2, va2, vl);
|
|
vs2 = VFMULVF_FLOAT(va1, bb2, vl);
|
|
vs2 = VFMACCVF_FLOAT(vs2, bb1, va2, vl);
|
|
#else
|
|
vs1 = VFMULVF_FLOAT(va1, bb1, vl);
|
|
vs1 = VFMACCVF_FLOAT(vs1, bb2, va2, vl);
|
|
vs2 = VFMULVF_FLOAT(va2, bb1, vl);
|
|
vs2 = VFNMSACVF_FLOAT(vs2, bb2, va1, vl);
|
|
#endif
|
|
VSSEG2_FLOAT(a, vs1, vs2, vl);
|
|
VSSEG2_FLOAT(pci, vs1, vs2, vl);
|
|
a += vl * 2;
|
|
pci += vl * 2;
|
|
|
|
for (k = 0; k < i; k ++){
|
|
VLSEG2_FLOAT(&vc1, &vc2, pcj + k * ldc * 2, vl);
|
|
#ifndef CONJ
|
|
vc1 = VFMACCVF_FLOAT(vc1, *(b + k * 2 + 1), vs2, vl);
|
|
vc1 = VFNMSACVF_FLOAT(vc1, *(b + k * 2 + 0), vs1, vl);
|
|
vc2 = VFNMSACVF_FLOAT(vc2, *(b + k * 2 + 1), vs1, vl);
|
|
vc2 = VFNMSACVF_FLOAT(vc2, *(b + k * 2 + 0), vs2, vl);
|
|
#else
|
|
vc1 = VFNMSACVF_FLOAT(vc1, *(b + k * 2 + 0), vs1, vl);
|
|
vc1 = VFNMSACVF_FLOAT(vc1, *(b + k * 2 + 1), vs2, vl);
|
|
vc2 = VFMACCVF_FLOAT(vc2, *(b + k * 2 + 1), vs1, vl);
|
|
vc2 = VFNMSACVF_FLOAT(vc2, *(b + k * 2 + 0), vs2, vl);
|
|
#endif
|
|
VSSEG2_FLOAT(pcj + k * ldc * 2, vc1, vc2, vl);
|
|
}
|
|
pcj += vl * 2;
|
|
}
|
|
b -= n * 2;
|
|
a -= 4 * m;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
int CNAME(BLASLONG m, BLASLONG n, BLASLONG k, FLOAT dummy1,
|
|
#ifdef COMPLEX
|
|
FLOAT dummy2,
|
|
#endif
|
|
FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc, BLASLONG offset){
|
|
|
|
BLASLONG i, j;
|
|
FLOAT *aa, *cc;
|
|
BLASLONG kk;
|
|
|
|
size_t vl = VSETVL_MAX;
|
|
|
|
//fprintf(stderr, "%s , %s, m = %4ld n = %4ld k = %4ld offset = %4ld\n", __FILE__, __FUNCTION__, m, n, k, offset); // Debug
|
|
|
|
kk = n - offset;
|
|
c += n * ldc * COMPSIZE;
|
|
b += n * k * COMPSIZE;
|
|
|
|
if (n & (GEMM_UNROLL_N - 1)) {
|
|
|
|
j = 1;
|
|
while (j < GEMM_UNROLL_N) {
|
|
if (n & j) {
|
|
|
|
aa = a;
|
|
b -= j * k * COMPSIZE;
|
|
c -= j * ldc* COMPSIZE;
|
|
cc = c;
|
|
|
|
i = vl;
|
|
if (i <= m) {
|
|
|
|
do {
|
|
if (k - kk > 0) {
|
|
GEMM_KERNEL(vl, j, k - kk, dm1,
|
|
#ifdef COMPLEX
|
|
ZERO,
|
|
#endif
|
|
aa + vl * kk * COMPSIZE,
|
|
b + j * kk * COMPSIZE,
|
|
cc,
|
|
ldc);
|
|
}
|
|
|
|
solve(vl, j,
|
|
aa + (kk - j) * vl * COMPSIZE,
|
|
b + (kk - j) * j * COMPSIZE,
|
|
cc, ldc);
|
|
|
|
aa += vl * k * COMPSIZE;
|
|
cc += vl * COMPSIZE;
|
|
i += vl;
|
|
} while (i <= m);
|
|
}
|
|
|
|
i = m % vl;
|
|
if (i) {
|
|
if (k - kk > 0) {
|
|
GEMM_KERNEL(i, j, k - kk, dm1,
|
|
#ifdef COMPLEX
|
|
ZERO,
|
|
#endif
|
|
aa + i * kk * COMPSIZE,
|
|
b + j * kk * COMPSIZE,
|
|
cc, ldc);
|
|
}
|
|
|
|
solve(i, j,
|
|
aa + (kk - j) * i * COMPSIZE,
|
|
b + (kk - j) * j * COMPSIZE,
|
|
cc, ldc);
|
|
|
|
aa += i * k * COMPSIZE;
|
|
cc += i * COMPSIZE;
|
|
|
|
}
|
|
kk -= j;
|
|
}
|
|
j <<= 1;
|
|
}
|
|
}
|
|
|
|
j = (n >> GEMM_UNROLL_N_SHIFT);
|
|
|
|
if (j > 0) {
|
|
|
|
do {
|
|
aa = a;
|
|
b -= GEMM_UNROLL_N * k * COMPSIZE;
|
|
c -= GEMM_UNROLL_N * ldc * COMPSIZE;
|
|
cc = c;
|
|
|
|
i = vl;
|
|
if (i <= m) {
|
|
do {
|
|
if (k - kk > 0) {
|
|
GEMM_KERNEL(vl, GEMM_UNROLL_N, k - kk, dm1,
|
|
#ifdef COMPLEX
|
|
ZERO,
|
|
#endif
|
|
aa + vl * kk * COMPSIZE,
|
|
b + GEMM_UNROLL_N * kk * COMPSIZE,
|
|
cc,
|
|
ldc);
|
|
}
|
|
|
|
solve(vl, GEMM_UNROLL_N,
|
|
aa + (kk - GEMM_UNROLL_N) * vl * COMPSIZE,
|
|
b + (kk - GEMM_UNROLL_N) * GEMM_UNROLL_N * COMPSIZE,
|
|
cc, ldc);
|
|
|
|
aa += vl * k * COMPSIZE;
|
|
cc += vl * COMPSIZE;
|
|
i += vl;
|
|
} while (i <= m);
|
|
}
|
|
|
|
i = m % vl;
|
|
if (i) {
|
|
if (k - kk > 0) {
|
|
GEMM_KERNEL(i, GEMM_UNROLL_N, k - kk, dm1,
|
|
#ifdef COMPLEX
|
|
ZERO,
|
|
#endif
|
|
aa + i * kk * COMPSIZE,
|
|
b + GEMM_UNROLL_N * kk * COMPSIZE,
|
|
cc,
|
|
ldc);
|
|
}
|
|
|
|
solve(i, GEMM_UNROLL_N,
|
|
aa + (kk - GEMM_UNROLL_N) * i * COMPSIZE,
|
|
b + (kk - GEMM_UNROLL_N) * GEMM_UNROLL_N * COMPSIZE,
|
|
cc, ldc);
|
|
|
|
aa += i * k * COMPSIZE;
|
|
cc += i * COMPSIZE;
|
|
|
|
}
|
|
|
|
kk -= GEMM_UNROLL_N;
|
|
j --;
|
|
} while (j > 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|