329 lines
9.0 KiB
C
329 lines
9.0 KiB
C
/***************************************************************************
|
|
Copyright (c) 2022, The OpenBLAS Project
|
|
All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
3. Neither the name of the OpenBLAS project nor the names of
|
|
its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
|
|
#include "common.h"
|
|
|
|
#if !defined(DOUBLE)
|
|
#define VSETVL(n) __riscv_vsetvl_e32m2(n)
|
|
#define VSETVL_MAX __riscv_vsetvlmax_e32m2()
|
|
#define FLOAT_V_T vfloat32m2_t
|
|
#define VLSEV_FLOAT __riscv_vlse32_v_f32m2
|
|
#define VSSEV_FLOAT __riscv_vsse32_v_f32m2
|
|
#define VSEV_FLOAT __riscv_vse32_v_f32m2
|
|
#define VLSEG2_FLOAT __riscv_vlseg2e32_v_f32m2
|
|
#define VSSEG2_FLOAT __riscv_vsseg2e32_v_f32m2
|
|
#define VLSSEG2_FLOAT __riscv_vlsseg2e32_v_f32m2
|
|
#define VSSSEG2_FLOAT __riscv_vssseg2e32_v_f32m2
|
|
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f32m2
|
|
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f32m2
|
|
#define VFMULVF_FLOAT __riscv_vfmul_vf_f32m2
|
|
#else
|
|
#define VSETVL(n) __riscv_vsetvl_e64m2(n)
|
|
#define VSETVL_MAX __riscv_vsetvlmax_e64m2()
|
|
#define FLOAT_V_T vfloat64m2_t
|
|
#define VLSEV_FLOAT __riscv_vlse64_v_f64m2
|
|
#define VSSEV_FLOAT __riscv_vsse64_v_f64m2
|
|
#define VSEV_FLOAT __riscv_vse64_v_f64m2
|
|
#define VLSEG2_FLOAT __riscv_vlseg2e64_v_f64m2
|
|
#define VSSEG2_FLOAT __riscv_vsseg2e64_v_f64m2
|
|
#define VLSSEG2_FLOAT __riscv_vlsseg2e64_v_f64m2
|
|
#define VSSSEG2_FLOAT __riscv_vssseg2e64_v_f64m2
|
|
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f64m2
|
|
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f64m2
|
|
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f64m2
|
|
#define VFMULVF_FLOAT __riscv_vfmul_vf_f64m2
|
|
#endif
|
|
|
|
|
|
static FLOAT dm1 = -1.;
|
|
|
|
#ifdef CONJ
|
|
#define GEMM_KERNEL GEMM_KERNEL_L
|
|
#else
|
|
#define GEMM_KERNEL GEMM_KERNEL_N
|
|
#endif
|
|
|
|
#if GEMM_DEFAULT_UNROLL_N == 1
|
|
#define GEMM_UNROLL_N_SHIFT 0
|
|
#endif
|
|
|
|
#if GEMM_DEFAULT_UNROLL_N == 2
|
|
#define GEMM_UNROLL_N_SHIFT 1
|
|
#endif
|
|
|
|
#if GEMM_DEFAULT_UNROLL_N == 4
|
|
#define GEMM_UNROLL_N_SHIFT 2
|
|
#endif
|
|
|
|
#if GEMM_DEFAULT_UNROLL_N == 8
|
|
#define GEMM_UNROLL_N_SHIFT 3
|
|
#endif
|
|
|
|
#if GEMM_DEFAULT_UNROLL_N == 16
|
|
#define GEMM_UNROLL_N_SHIFT 4
|
|
#endif
|
|
|
|
// Optimizes the implementation in ../arm64/trsm_kernel_LT_sve.c
|
|
|
|
#ifndef COMPLEX
|
|
|
|
static inline void solve(BLASLONG m, BLASLONG n, FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc) {
|
|
|
|
FLOAT aa;
|
|
FLOAT* pc;
|
|
|
|
int i, j, k;
|
|
|
|
BLASLONG stride_ldc = sizeof(FLOAT) * ldc;
|
|
|
|
FLOAT_V_T vb, vc;
|
|
|
|
size_t vl;
|
|
|
|
for (i = 0; i < m; i++) {
|
|
|
|
aa = *(a + i);
|
|
pc = c;
|
|
for (j = n; j > 0; j -= vl) {
|
|
vl = VSETVL(j);
|
|
vb = VLSEV_FLOAT(pc + i, stride_ldc, vl);
|
|
vb = VFMULVF_FLOAT(vb, aa, vl);
|
|
VSEV_FLOAT(b, vb, vl);
|
|
VSSEV_FLOAT(pc + i, stride_ldc, vb, vl);
|
|
b += vl;
|
|
|
|
for (k = i + 1; k < m; k++) {
|
|
vc = VLSEV_FLOAT(pc + k, stride_ldc, vl);
|
|
vc = VFNMSACVF_FLOAT(vc, *(a + k), vb, vl);
|
|
VSSEV_FLOAT(pc + k, stride_ldc, vc, vl);
|
|
}
|
|
pc += vl * ldc;
|
|
}
|
|
a += m;
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void solve(BLASLONG m, BLASLONG n, FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc) {
|
|
|
|
FLOAT aa1, aa2;
|
|
FLOAT *pc;
|
|
int i, j, k;
|
|
|
|
BLASLONG stride_ldc = sizeof(FLOAT) * ldc * 2;
|
|
|
|
FLOAT_V_T vb1, vb2, vc1, vc2, vs1, vs2;
|
|
size_t vl;
|
|
|
|
ldc *= 2;
|
|
|
|
for (i = 0; i < m; i++) {
|
|
aa1 = *(a + i * 2 + 0);
|
|
aa2 = *(a + i * 2 + 1);
|
|
pc = c;
|
|
|
|
for (j = n; j > 0; j -= vl) {
|
|
vl = VSETVL(j);
|
|
VLSSEG2_FLOAT(&vb1, &vb2, pc + i * 2, stride_ldc, vl);
|
|
#ifndef CONJ
|
|
vs1 = VFMULVF_FLOAT(vb1, aa1, vl);
|
|
vs1 = VFNMSACVF_FLOAT(vs1, aa2, vb2, vl);
|
|
vs2 = VFMULVF_FLOAT(vb2, aa1, vl);
|
|
vs2 = VFMACCVF_FLOAT(vs2, aa2, vb1, vl);
|
|
#else
|
|
vs1 = VFMULVF_FLOAT(vb1, aa1, vl);
|
|
vs1 = VFMACCVF_FLOAT(vs1, aa2, vb2, vl);
|
|
vs2 = VFMULVF_FLOAT(vb2, aa1, vl);
|
|
vs2 = VFNMSACVF_FLOAT(vs2, aa2, vb1, vl);
|
|
#endif
|
|
VSSEG2_FLOAT(b, vs1, vs2, vl);
|
|
VSSSEG2_FLOAT(pc + i * 2, stride_ldc, vs1, vs2, vl);
|
|
b += vl * 2;
|
|
|
|
for (k = i + 1; k < m; k++) {
|
|
VLSSEG2_FLOAT(&vc1, &vc2, pc + k * 2, stride_ldc, vl);
|
|
#ifndef CONJ
|
|
vc1 = VFMACCVF_FLOAT(vc1, *(a + k * 2 + 1), vs2, vl);
|
|
vc1 = VFNMSACVF_FLOAT(vc1, *(a + k * 2 + 0), vs1, vl);
|
|
vc2 = VFNMSACVF_FLOAT(vc2, *(a + k * 2 + 1), vs1, vl);
|
|
vc2 = VFNMSACVF_FLOAT(vc2, *(a + k * 2 + 0), vs2, vl);
|
|
#else
|
|
vc1 = VFNMSACVF_FLOAT(vc1, *(a + k * 2 + 1), vs2, vl);
|
|
vc1 = VFNMSACVF_FLOAT(vc1, *(a + k * 2 + 0), vs1, vl);
|
|
vc2 = VFMACCVF_FLOAT(vc2, *(a + k * 2 + 1), vs1, vl);
|
|
vc2 = VFNMSACVF_FLOAT(vc2, *(a + k * 2 + 0), vs2, vl);
|
|
#endif
|
|
VSSSEG2_FLOAT(pc + k * 2, stride_ldc, vc1, vc2, vl);
|
|
}
|
|
pc += vl * ldc * 2;
|
|
}
|
|
|
|
a += m * 2;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
int CNAME(BLASLONG m, BLASLONG n, BLASLONG k, FLOAT dummy1,
|
|
#ifdef COMPLEX
|
|
FLOAT dummy2,
|
|
#endif
|
|
FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc, BLASLONG offset){
|
|
|
|
FLOAT *aa, *cc;
|
|
BLASLONG kk;
|
|
BLASLONG i, j;
|
|
|
|
size_t vl = VSETVL_MAX;
|
|
|
|
//fprintf(stderr, "%s , %s, m = %4ld n = %4ld k = %4ld offset = %4ld\n", __FILE__, __FUNCTION__, m, n, k, offset); // Debug
|
|
|
|
j = (n >> GEMM_UNROLL_N_SHIFT);
|
|
|
|
while (j > 0) {
|
|
|
|
kk = offset;
|
|
aa = a;
|
|
cc = c;
|
|
|
|
i = vl;
|
|
|
|
while (i <= m) {
|
|
|
|
if (kk > 0) {
|
|
GEMM_KERNEL(vl, GEMM_UNROLL_N, kk, dm1,
|
|
#ifdef COMPLEX
|
|
ZERO,
|
|
#endif
|
|
aa, b, cc, ldc);
|
|
}
|
|
|
|
solve(vl, GEMM_UNROLL_N,
|
|
aa + kk * vl * COMPSIZE,
|
|
b + kk * GEMM_UNROLL_N * COMPSIZE,
|
|
cc, ldc);
|
|
|
|
aa += vl * k * COMPSIZE;
|
|
cc += vl * COMPSIZE;
|
|
kk += vl;
|
|
i += vl;
|
|
}
|
|
|
|
i = m % vl;
|
|
if (i) {
|
|
if (kk > 0) {
|
|
GEMM_KERNEL(i, GEMM_UNROLL_N, kk, dm1,
|
|
#ifdef COMPLEX
|
|
ZERO,
|
|
#endif
|
|
aa, b, cc, ldc);
|
|
}
|
|
solve(i, GEMM_UNROLL_N,
|
|
aa + kk * i * COMPSIZE,
|
|
b + kk * GEMM_UNROLL_N * COMPSIZE,
|
|
cc, ldc);
|
|
|
|
aa += i * k * COMPSIZE;
|
|
cc += i * COMPSIZE;
|
|
kk += i;
|
|
|
|
}
|
|
|
|
b += GEMM_UNROLL_N * k * COMPSIZE;
|
|
c += GEMM_UNROLL_N * ldc * COMPSIZE;
|
|
j --;
|
|
}
|
|
|
|
if (n & (GEMM_UNROLL_N - 1)) {
|
|
|
|
j = (GEMM_UNROLL_N >> 1);
|
|
while (j > 0) {
|
|
if (n & j) {
|
|
|
|
kk = offset;
|
|
aa = a;
|
|
cc = c;
|
|
|
|
i = vl;
|
|
|
|
while (i <= m) {
|
|
if (kk > 0) {
|
|
GEMM_KERNEL(vl, j, kk, dm1,
|
|
#ifdef COMPLEX
|
|
ZERO,
|
|
#endif
|
|
aa,
|
|
b,
|
|
cc,
|
|
ldc);
|
|
}
|
|
|
|
solve(vl, j,
|
|
aa + kk * vl * COMPSIZE,
|
|
b + kk * j * COMPSIZE, cc, ldc);
|
|
|
|
aa += vl * k * COMPSIZE;
|
|
cc += vl * COMPSIZE;
|
|
kk += vl;
|
|
i += vl;
|
|
}
|
|
|
|
i = m % vl;
|
|
if (i) {
|
|
if (kk > 0) {
|
|
GEMM_KERNEL(i, j, kk, dm1,
|
|
#ifdef COMPLEX
|
|
ZERO,
|
|
#endif
|
|
aa,
|
|
b,
|
|
cc,
|
|
ldc);
|
|
}
|
|
|
|
solve(i, j,
|
|
aa + kk * i * COMPSIZE,
|
|
b + kk * j * COMPSIZE, cc, ldc);
|
|
|
|
aa += i * k * COMPSIZE;
|
|
cc += i * COMPSIZE;
|
|
kk += i;
|
|
|
|
}
|
|
|
|
b += j * k * COMPSIZE;
|
|
c += j * ldc * COMPSIZE;
|
|
}
|
|
j >>= 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|